• 제목/요약/키워드: Maximum mutual information (MMI)

검색결과 5건 처리시간 0.02초

External knowledge를 사용한 LFMMI 기반 음향 모델링 (LFMMI-based acoustic modeling by using external knowledge)

  • 박호성;강요셉;임민규;이동현;오준석;김지환
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.607-613
    • /
    • 2019
  • 본 논문은 external knowledge를 사용한 lattice 없는 상호 정보 최대화(Lattice Free Maximum Mutual Information, LF-MMI) 기반 음향 모델링 방법을 제안한다. External knowledge란 음향 모델에서 사용하는 학습 데이터 이외의 문자열 데이터를 말한다. LF-MMI란 심층 신경망(Deep Neural Network, DNN) 학습의 최적화를 위한 목적 함수의 일종으로, 구별 학습에서 높은 성능을 보인다. LF-MMI에는 DNN의 사후 확률을 계산하기 위해 음소의 열을 사전 확률로 갖는다. 본 논문에서는 LF-MMI의 목적식의 사전 확률을 담당하는 음소 모델링에 external knowlege를 사용함으로써 과적합의 가능성을 낮추고, 음향 모델의 성능을 높이는 방법을 제안한다. External memory를 사용하여 사전 확률을 생성한 LF-MMI 모델을 사용했을 때 기존 LF-MMI와 비교하여 14 %의 상대적 성능 개선을 보였다.

Maximum mutual information estimation을 이용한 linear spectral transformation 기반의 adaptation (Maximum mutual information estimation linear spectral transform based adaptation)

  • 유봉수;김동현;육동석
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 춘계 학술대회 발표논문집
    • /
    • pp.53-56
    • /
    • 2005
  • In this paper, we propose a transformation based robust adaptation technique that uses the maximum mutual information(MMI) estimation for the objective function and the linear spectral transformation(LST) for adaptation. LST is an adaptation method that deals with environmental noises in the linear spectral domain, so that a small number of parameters can be used for fast adaptation. The proposed technique is called MMI-LST, and evaluated on TIMIT and FFMTIMIT corpora to show that it is advantageous when only a small amount of adaptation speech is used.

  • PDF

멀티 레벨 셀 낸드 플래시 메모리용 적응적 양자화기 설계 (Adaptive Quantization Scheme for Multi-Level Cell NAND Flash Memory)

  • 이동환;성원용
    • 한국통신학회논문지
    • /
    • 제38C권6호
    • /
    • pp.540-549
    • /
    • 2013
  • 본 논문에서는 멀티 레벨 셀 낸드 플래시 메모리에서 연판정 에러 정정을 위한 적응적 비균일 양자화기를 제안한다. 기존의 최대 상호 정보(maximum mutual information) 양자화기는 최적의 연판정 에러 정정 성능을 보이지만, 소모적인 탐색(exhaustive search)으로 인하여 많은 계산량을 요구한다. 본 논문에서 제안된 양자화기는 최대 여섯 개의 파라미터로 표현되는 간단한 구조를 갖고 있어 연산량이 적다. 또한 제안된 양자화기는 쓰기 심볼과 읽기 심볼 사이의 상호 정보를 최대화하는 방향으로 파라미터 값의 최적화시키므로, 최대 상호 정보 양자화기에 근접하는 우수한 연판정 에러 정정 성능을 보인다.

하이브리드법에 의한 HMM-Net 분류기의 학습 (On Learning of HMM-Net Classifiers Using Hybrid Methods)

  • 김상운;신성효
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1273-1276
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood (ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM-Net classifiers using hybrid criteria, ML/MMSE and MMI/MMSE, and report the results of an experimental study comparing the performance of HMM-Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

HMM-Net 분류기의 학습 (On learning of HMM-Net classifiers)

  • 김상운;오수환
    • 전자공학회논문지C
    • /
    • 제34C권9호
    • /
    • pp.61-67
    • /
    • 1997
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model(HMM). The architecture is developed for the purpose of combining the classification power of neural networks with the time-domain modeling capability of HMMs. Criteria which are used for learning HMM_Net classifiers are maximum likelihood(ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numbers from /young/to/koo/ show that in the binary inputs the performance of MMSE is better than the others, while in the fuzzy inputs the performance of MMI is better than the others.

  • PDF