• Title/Summary/Keyword: Maximum effective temperature

Search Result 516, Processing Time 0.025 seconds

The Effect of Working Fluid Charge on the Performance of a Heat Pipe for Medium-temperature Solar Thermal Storage System (중온 태양열 축열조용 히트파이프의 작동액체 충전량이 열성능에 미치는 영향)

  • Min, Kyu-Park;Joon, Hong-Boo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.68-73
    • /
    • 2011
  • An experimental study was conducted to investigate the thermal performance of a medium-temperature heat pipe against the charge amount of working fluid. The container and the wick of the heat pipe were made of stainless steel and the working fluid was Dowtherm-A for medium-temperature applications around $250^{\circ}C$. The diameter and length of the heat pipe were 25.4 mm and 1 m, respectively. The maximum thermal load was 1 kW and the working fluid charge ratio varied from 372% to 420%. The results showed that the thermal resistance ranged from 0.12 to $250^{\circ}C/W$ and the effective thermal conductance ranged from 7,703 to $8,898 W/m{\cdot}K$. Dry-out occurred for the heat pipe with 372% fill-charge at the heat load of 950 W, while the other heat pipes with higher charge amount did not encounter dry-out up to 1060 W.

  • PDF

Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성)

  • Han, Beom-Jeong;Jeong, Yong-Chai;Kim, Sung-Ryul;Kim, Ro-Won;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

Analysis of Variance of Paddy Water Demand Depending on Rice Transplanting Period and Ponding Depth (이앙시기 및 담수심 변화에 따른 논벼 수요량 변화 분석)

  • Cho, Gun-Ho;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.75-85
    • /
    • 2021
  • This study evaluated variations in the paddy rice water demand based on the continuous changing in rice transplanting period and ponding depth at the four study paddy fields, which represent typical rice producing regions in Korea. Total 7 scenarios on rice transplanting periods were applied while minimum ponding depth of 0 and 20 mm were applied in accordance with maximum ponding depth ranging from 40 mm to 100 mm with 20 mm interval. The weather data from 2013 to 2019 was also considered. The results indicated that the highest rice water demand occurred at high temperature and low rainfall region. Increased rice transplanting periods showed higher rice water demand. The rice water demand for 51 transplanting days closely matched with the actual irrigation water supply. In case of ponding depth, the results showed that the minimum ponding depth had a proportional relationship with rice water demand, while maximum ponding depth showed the contrary results. Minimum ponding depth had a greater impact on rice water demand than the maximum ponding depth. Therefore, these results suggest that increasing the rice transplanting period, which reflects the current practice is desirable for a reliable estimation of rice water demand.

Development of a Cost-Effective Process for the Fabrication of Single Grain $YBa_2Cu_3O_{7-y}$ Bulk Superconductors (단결정 $YBa_2Cu_3O_{7-y}$ 벌크 초전도체 제조를 위한 경제적 공정의 개발)

  • Park, Soon-Dong;Kim, Kwang-Mo;Jun, Byung-Hyuk;Han, Young-Hee;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • To reduce the processing cost of the single grain REBCO (RE: Rare-earth elements) bulk superconductors, a cost-effective process should be developed. One possible way of developing the cost-effective process is the use of low-cost precursor powders. In this study, the single grain YBCO superconductors were fabricated using a home made powder. $YBa_2Cu_3O_{7-y}$ (Y123) powders were synthesized at $850-900^{\circ}C$ in air by the powder calcination method with repeated crushing and heat treatment steps. The processing parameters for the fabrication of single grain Y123 bulk superconductors, $T_{max}$ (maximum temperature), $T_p$ (peritectic temperature) and a cooling rate through $T_p$ were optimized. To enhance the flux pinning capacity of the single grain Y123 samples, $Y_2BaCuO_5$ (Y211) particles were dispersed in the Y123 matrix by adding $Y_2O_3$ powder to the calcined Y123 powder. Applying the optimized processing condition, the single grain Y123 superconductors with $T_c=91\;K$ and $J_c=1.5{\times}10^4\;A/cm^2$ at 2 T were successfully fabricated using a home made powder. The levitation forces and trapped magnetic field at 77 K measured using a Nd-B-Fe permanent magnet of 5300 G were 47 N and 3000 G, respectively, which are comparable to those obtained for the samples fabricated using a commercial grade Y123 powders.

A Numerical Study on the Thermal Stimulation of Continuous Moxibustion (연속 뜸의 열 자극에 대한 수치해석)

  • Yang, So-Ra;Kang, Ho-Young;Jeon, Byoung-Jin;Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.915-922
    • /
    • 2011
  • In this paper, the unsteady incompressible Navier-Stokes equation coupled with energy equation was solved in order to investigate the thermal stimulation of continuous moxibustion using a commercial code (ANSYS-Fluent). In the simulations, various periods were selected for the continuous moxibustion, which was done by burning multiple disks successively. It has been found that the depth of the effective stimulation zone increases only when the replacing temperature is equal or larger than body temperature whereas the increase rate of the effective stimulation depth decreases as the number of disc increases. Further, it has been shown that the optimal period, for which the duration time of the effective stimulation zone is maximum, exists.

Adsorption and Diffusion Characteristics of Benzene, Toluene, and Xylene Vapors on Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X에서 벤젠, 톨루엔 및 자일렌 증기의 흡착 및 확산 특성)

  • Jung, Min-Young;Suh, Sung-Sup
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.358-367
    • /
    • 2019
  • Adsorption equilibrium and intraparticle diffusion characteristics of benzene, toluene, and xylene vapors on activated carbon and zeolite 13X were investigated. Static adsorption experiments were carried out under the pressure range of 0.01~0.07 bar while changing the adsorption temperature to 293.15 K, 303.15 K, and 313.15 K, respectively. Adsorption equilibrium was analyzed by Langmuir, Freundlich and Toth models. The adsorption energy was 5.26~31.0 kJ/mol representing physical adsorption characteristics. The maximum adsorption capacity on activated carbon was the largest for benzene, and the smallest for xylene. Toluene was in between. In the case of zeolite 13X, the maximum adsorption capacity was the largest for xylene, and the smallest for benzene as opposed to activated carbon. The effective diffusion coefficients of gas adsorbate were measured to be about $10^{-5}{\sim}10^{-4}cm^2/s$, and increased with temperature. As the pressure increased, the effective diffusion coefficients were decreased. The dependence of effective diffusion coefficients on temperature and pressure was greater in zeolite 13X particles than in activated carbon. Therefore, it is necessary to express the diffusion coefficients as a function of pressure in order to predict the precise dynamic behavior of the adsorption process using zeolite 13X where the pressure fluctuation occurs abruptly.

Studies on the Residual Bending Strength of Burned Wood treated with Fire-retardant Chemicals (내화처리연소목(耐火處理燃燒木)의 잔류(殘留) 휨강도에 관(關)한 연구(硏究))

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.10-19
    • /
    • 1984
  • The $3{\times}3{\times}30$ ($cm^3$) sized lumbers of Populus alba-grandulosa L. were treated with four fire-retardant solutions of ammonium sulfate, monoammonium phosphate, diammonium phosphate and aluminium chloride for 1, 15, 30, and 60 minutes and 1, 3, and 7 days. Thereafter they were air-dried and burned at high temperature about $1,800^{\circ}C$ and for short time of five minutes. This study estimated the relationship between absorbed chemical amounts and rate of weight loss or residual bending strength of these burned lumbers. The results were as follows: 1) In absorption amount of fire-retardant chemicals, diammonium phosphate showed the largest, aluminium chloride the smallest, but monoammonium phosphate and ammonium sulfate showed similar level. 2) The absorption amount of chemicals was decreased with the increase of specific gravity in the same species except aluminium chloride. 3) The rate of weight loss was decreased as the absorption amount of chemicals increased, especially monoammonium phosphate was most effective. 4) The MOR value of the residual bending strength was increased as the absorption amount of chemicals increased and especially monoammonium phosphate showed the most efficient effect. 5) Aluminium chloride showed more striking increase of MOR value of residual bending strength with the increase of absorption amount than any other chemical, therefore its MOR value was similar to the maximum MOR value of the most effective monoammonium phosphate. 6) The correlation between weight loss and MOR value of the residual bending strength was negative and aluminium chloride showed the most striking negative relation, but the others showed similar trends. 7) The correlation between work to proportional limit and absorption amount of chemicals was positive and the degree of increase in work to proportional limit was most in aluminium chloride, and the next, in monoammonium phosphate and diammonium phosphate in turn. 8) The correlation between work to maximum load and absorption amount of chemicals showed positive and diammonium phosphate revealed the best result and aluminium chloride showed better results than other two chemicals.

  • PDF

A Study on Evaluation of Thermal Environment using Heat Stress Indices for Deep Coal Mine in Korea (열적지표를 적용한 국내 고심도 석탄광산의 열환경 평가 연구)

  • Park, Seon-Oh;Roh, Jang-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.166-175
    • /
    • 2014
  • In this study, the thermal environment in a large scale coal mine located in Taebaek, Gangwondo was assessed by a field survey. In order to estimate the thermal environment, various heat stress indices such as WBGT, HSI, ESI, KATA index and effective temperature were investigated. Correlation analysis was also conducted. It was found that the thermal environment in most workplace was high. In particular, the correlation coefficient between HSI reflected in physiological fatigue characteristic and the maximum sweat evaporation heat was -0.834. This shows that the correlation coefficient have the most influence on HSI index. The factor which has the most influence on the maximum sweat evaporation heat is velocity of air. The thermal environment of high-depth coal mines is likely to be improved by installing a structure that enables the maximum prevention of extended digging, air doors, or the leakage of the inflow of air in the first shaft.

Physicochemical Characteristics and Antioxidant Activities of Omija (Schizandra chinensis Baillon) Seed Oil Extracted at Different Temperatures and Moisture Contents (추출온도 및 함수율에 따른 오미자 종자유의 이화학적 특성 및 항산화활성)

  • Park, Ye Gun;Park, So Yeon;Park, Youn-Je
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.1
    • /
    • pp.62-73
    • /
    • 2022
  • Omija seed oil was extracted from Omija seeds, a by-product of Omija, using an eco-friendly pressed extraction method. Physicochemical properties and antioxidant activities of 12 extracts using different combinations of seed moisture content (5, 7.5, and 10%) and extraction temperature (25, 49, 75, and 100℃) were then investigated. The highest extraction yield was 31.33% at moisture of 5% and temperature of 75℃. The lowest acid value was 4.18±0.25 at moisture of 5% and temperature of 49℃or moisture of 7.5% and temperature of 25℃. Peroxide value, iodine value, and saponification value were the lowest at 0.64±0.56 meq/kg, 159.38± 6.03, and 57.60±9.40, respectively, at moisture of 5% and temperature of 25℃. The content of total polyphenolics was the highest at 4,413±125 mg TAE/100 g when the moisture content was 10% and the extraction temperature was 25℃. DPPH radical scavenging activities of oil extracts at 20~100 mg/mL were 28.68±7.30~87.65±2.20%. The maximum antioxidant activity and IC50 were 87.65±2.20% and <20 mg/mL, respectively, for extract obtained at moisture of 10% and temperature at 100℃. As a result, the extraction yield, acid value, peroxide value, iodine value, saponification value, and so on were excellent at moisture content of 5% and extraction temperature of 25℃ or 49℃. However, the content of total polyphenolic compounds and antioxidant activity were the highest at moisture of 10% and extraction temperature of 100℃. In conclusion, extracting Omija seed oil from Omija seeds, a by-product of Omija, is effective with a pressed extraction method.

Optimal Conditions for Chitinase Production by Serratia marcescens

  • Cha, Jin-Myeong;Cheong, Kyung-Hoon;Cha, Wol-Suk;Choi, Du-Bok;Roh, Sung-Hee;Kim, Sun-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.297-302
    • /
    • 2004
  • A chitinase-producing bacterium was isolated from seashore mud around Beobseongpo in Chunmam province through the use of a selective enrichment culture. The best chitinase producing strain was isolated and identified as Serratia marcescens KY from its characteristics. For effective production of chitinase, optimum pH, temperature, and agitation speed were investigated in flask cultures. The optimum pH using Serratia marcescens KY was between pH 6 and 7 and the chitinase produced was 37.9 unit/mL. On the other hand, the optimal pH of the Serratia marcescens ATCC 27117 was 7.5, and the produced amount of chitinase was 35.2 unit/mL. The optimal temperature for chitinase production for Serratia marcescens KY and Serratia marcescens ATCC 27117 was $30^{\circ}$. The cell growth pattern at different temperature was almost identical to the chitinase production. To investigate the optimal shaking speed under optimal culture, speeds were varied in the range of 0∼300 rpm. The maximum production of chitinase was carried at 200 rpm although the cell growth was the highest at 150 rpm. It indicates that oxygen adjustment is required for the maximum chitinase production. Using optimal conditions, batch cultures for comparing Serratia marcescens KY and Serratia marcescens ATCC 27117 were carried out in a 5 L fermentor. The oxygen consumption was increased with the increase of culture. Especially, at 120 h of culture Serratia marcescens KY and Serratia marcescens ATCC 27117 produced 38.3 unit/mL, and 33.5 unit/mL, respectively.