• Title/Summary/Keyword: Maximum distortion

Search Result 338, Processing Time 0.024 seconds

Comparison of Maximum Isometric Strength, Proprioceptive, Dynamic Balance, and Maximum Angle by Applying the Fascial Distortion Model to Chronic Ankle Instability Subjects

  • Lee, Jae Kwang;Kim, Chan Myeong
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.5
    • /
    • pp.224-230
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate the effects of the fascia distortion model (FDM), one of the fascia treatments, on unstable ankle subjects. This was done through the chronic ankle instability tool (CAIT) questionnaire on maximum isometric muscle strength, proprioception, dynamic balance, and maximum angle. Methods: An experiment was conducted using the chronic ankle instability tool questionnaire on males and females in their twenties who suffered from ankle instability. Before the experiment, maximum isometric strength, proprioceptive, dynamic balance, and maximum angle were measured. The fascia distortion model was applied and then measurements were taken again to compare and analyze the changes. Analysis was carried out using the paired t-test. Results: After applying the fascia distortion model, maximum isometric strength, proprioceptive, dynamic balance, and maximum angle significantly improved (p<0.05). Conclusion: This study found that the fascia distortion model method was effective in improving maximum isometric strength, proprioceptive, dynamic balance, and maximum angle. The results suggest that the fascia distortion model method is a new intervention that could be used for subjects with chronic ankle instability.

The Increment Of The Local Scour Depth At Piers By Constructing The Bridge Between Existing Bridges

  • Choi, Gye-Woon;Kim, Gee-Hyoung
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.159-168
    • /
    • 2000
  • In this paper, the increment of the local scour depth at piers by constructing the bridge between existing bridges is examined through the experiments in which 5 piers in the non-cohesive bed material in the experimental flume were installed. In the experiments the maximum distance of 25 times of the pier length and the maximum distortion width of 8 times of the pier width were utilized. Through the experimental studies, it was indicated that low flow, which can be characterized as the flow having low Froude numbers, the maximum bed configuration change is obtained when the piers are installed in the straight line in the flor direction without any distortion. However, In the high flow, which can be characterized as the flow having high Froude numbers, the maximum bed configuration change is obtained when the piers are installed with some distortion from the flow direction. The influence of the bed configuration by interaction between bridge piers is changed depending upon the Froude numbers, the distance between piers, and the distortion width between adjacent bridge piers. Also, because the scour patterns are affected by the bed configuration, the maximum scour should be increased by about 60% compared to that in a single pier if the interaction between bridge piers exists. It can be suggested that the maximum scour depth at bridge piers predicted by applying the existing equations should be increased if the interaction between bridge piers exist. Those cases are found when new bridges are constructed successively in the river in the urban area.

  • PDF

Effects of the Lengh of Tack Weld on the Rotational Distortion of the one side SA Butt Weldment (자동 용접부 회전 변형에 미치는 가접의 영향)

  • Sin Sang Beom;Kim Gyeong Gyu;Yun Jung Geun
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.289-291
    • /
    • 2004
  • The purpose of this study is to identify the effects of the length of tack weldment on the rotational distortion at the one side SA butt weldment using experiment. The maximum rotational distortion at the end of the SA weldment decrease with an increase in the length of tack weld length, while the maximum rate of the distortion increases. This result indicates that the increase of the length of the tack weldment at the one-side SA butt weldment does not prevent the hot cracks.

  • PDF

Performance Comparison of S-MMA Adaptive Equalization Algorithm by Slice Weighting Value in 16-QAM Signal (16-QAM 신호에서 Slice 가중치에 의한 S-MMA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.55-61
    • /
    • 2013
  • This paper compare the performance of S-MMA(Sliced-MultiModulus Algorithm) adaptive equalization algorithm by effect of slice weighting value for the minimization of the distortion and noise in the communication channel.. In the traditional MMA algorithm, the output signal of equalizer and the dispersion constant of transmitting signal is used for calculating the equalizer coefficient, but in S-MMA, the output of equalizer and dispersion constant and the considering the output of decision device by the power of slice constant are used in order to simultaneously compensate the distortion of amplitude and phase distortion. It is confirmed by computer simulation that the slice weighting value affects the performance of adaptive equalization algorithm. The performance index includes the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER according to the signal and noise power ratio at the channel is used. As a result of simulation, the residual isi, maximum distortion and MSE performances are better in the small weighting values. But in SER performance is better in the large weighting values.

Three-dimensional finite element analysis of unilateral mastication in malocclusion cases using cone-beam computed tomography and a motion capture system

  • Yang, Hun-Mu;Cha, Jung-Yul;Hong, Ki-Seok;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.96-106
    • /
    • 2016
  • Purpose: Stress distribution and mandible distortion during lateral movements are known to be closely linked to bruxism, dental implant placement, and temporomandibular joint disorder. The present study was performed to determine stress distribution and distortion patterns of the mandible during lateral movements in Class I, II, and III relationships. Methods: Five Korean volunteers (one normal, two Class II, and two Class III occlusion cases) were selected. Finite element (FE) modeling was performed using information from cone-beam computed tomographic (CBCT) scans of the subjects' skulls, scanned images of dental casts, and incisor movement captured by an optical motion-capture system. Results: In the Class I and II cases, maximum stress load occurred at the condyle of the balancing side, but, in the Class III cases, the maximum stress was loaded on the condyle of the working side. Maximum distortion was observed on the menton at the midline in every case, regardless of loading force. The distortion was greatest in Class III cases and smallest in Class II cases. Conclusions: The stress distribution along and accompanying distortion of a mandible seems to be affected by the anteroposterior position of the mandible. Additionally, 3-D modeling of the craniofacial skeleton using CBCT and an optical laser scanner and reproduction of mandibular movement by way of the optical motion-capture technique used in this study are reliable techniques for investigating the masticatory system.

Rate-User-Perceived-Quality Aware Replication Strategy for Video Streaming over Wireless Mesh Networks

  • Du, Xu;Vo, Nguyen-Son;Cheng, Wenqing;Duong, Trung Q.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2103-2120
    • /
    • 2011
  • In this research, we consider the replication strategy for the applications of video streaming in wireless mesh networks (WMNs). In particular, we propose a closed-form of optimal replication densities for a set of frames of a video streaming by exploiting not only the skewed access probability of each frame but also the skewed loss probability and skewed encoding rate-distortion information. The simulation results demonstrate that our method improves the replication performance in terms of user-perceived quality (UPQ) which includes: 1) minimum average maximum reconstructed distortion for high peak signal-to-noise ratio (PSNR), 2) small reconstructed distortion fluctuation among frames for smooth playback, and 3) reasonable average maximum transmission distance for continuous playback. Furthermore, the proposed strategy consumes smaller storage capacity compared to other existing optimal replication strategies. More importantly, the effect of encoding rate is carefully investigated to show that high encoding rate does not always gain high performance of replication for video streaming.

Analysis of Welding Distortion during the Production of Fuel Tanks for Excavators (연료탱크 제작시 시뮬레이션을 통한 용접변형 해석)

  • Yang, Young-Soo;Kim, Duck-Youn;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.24-34
    • /
    • 2016
  • To attach a fuel tank to an excavator, two sets of mounting plates on which three bosses are attached are welded onto the tank. In this study, the welding process of a fuel tank for an excavator was modeled using a finite element numerical method. The tank was modeled as a simple plate to which the mounting plate or bosses were attached by fillet welding. Thermal and thermo-elasto-plastic analyses of the welding process were carried out to predict the temperature distribution and material distortion during welding, respectively. Three different welding sequences for the tank were also modelled to compare the deformation that occurred due to each welding sequence. The results of the analysis predicted that changing the welding sequence around the mounting plate could not position the boss within the allowable dimensional range. The results also revealed the sequence in which the maximum distortion of the bosses welded onto the tank was 30% less than the maximum distortion due to the other sequences.

Development of an Efficient Method to Consider Weld Distortion in Tolerance Analysis (용접변형을 고려한 효율적 공차해석 기법 개발)

  • Yim Hyunjune;Lee Dongyul;Lee Jaeyeol;Kwon Ki Eak;Shin Jong-Gye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1377-1383
    • /
    • 2005
  • A general and efficient methodology has been developed to analyze dimensional variations of an assembly, taking into account of weld distortion. Weld distortion is generally probabilistic because of the random nature of welding parameters such as the welding speed, maximum welding temperature, ambient temperature, etc. The methodology is illustrated through a very simple example of two perpendicular plates fillet-welded to each other. Two steps comprise the methodology: establishment of a weld-distortion database, and tolerance analysis using the database. To establish the database, thermo-elasto-plastic finite element analyses are conducted to compute the weld distortion for all combinations of discrete values of major welding parameters. In the second step of tolerance analysis, the weld distortion retrieved from the database is used in addition to the dimensional tolerances of the parts. As a result of such an analysis, sensitivities of the assembly's dimensional variations to the part tolerances and weld distortion are obtained, which can be help improve the dimensional quality of the assembly.

Distortion and Dilatatioin in the Tensie Failure of Paper

  • Park, Jong-Moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.73-85
    • /
    • 1999
  • Yield and fracture are separated in the tensile failure of paper. Failure in the machine direction of photocopy paper is contrasted with failure in the cross-machine direction . The ratios of distortion (shape change) to dilatation (volume change) for individual elements at yield and fracture are described. The ratios of distortion to dilatation are measured and compared to predicted values of the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density factor, samples are prepared from machine direction to cross-machine direction in 15 degree intervals. the strain energy density of individual elements are obtained by the integration of stress from finite element analysis with elastic plus plastic strain energy density theory. Poison's ratio and the angle from the principal material direction have a great effect ion the ratio fo distortion to dilatation in paper. During the yield condition, distortion prevails over dilatation . At fracture, dilatation is at a maximum.

  • PDF

Distortion Correction in Magnetic Resonance Images on the Measurement of Muscle Cross-sectional Area (자기공명영상을 이용한 근육 단면적 측정법의 활용을 위한 영상왜곡보정)

  • Hong, Cheol-Pyo;Lee, Dong-Hoon;Park, Ji-Won;Han, Bong-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Purpose: The purpose of this study is to explore the importance of the image distortion correction in the cross sectional area measurement for the iliopsas muscle, tensor fasciae latae muscle, gluteus maximus muscle and the knee extensor muscles, by using (magnetic resonance imaging) MRI. Methods: This study was performed using an open 0.32T MRI system. To estimate the image distortion, T1 images for an AAPM homogeneity/linearity phantom were acquired, and the region in which the maximum geometric distortion was less than or equal to the pixel size (1.6 mm) of the images, it was defined as the distortion correction-free region. The T2 images for a human subject's pelvis and thigh in normal positions were obtained. Then, after the regions of interest in the pelvis and thigh were moved into the distortion correction-free region, T2 images for the pelvis and thigh were scanned with the same imaging parameters used in the previous T2 imaging. The cross-sectional areas were measured in the two T2 images that were obtained in the normal position, and the distortion correction-free region, as well as the area error caused by geometric image distortion was calculated. Results: The geometrical distortion is gradually increased, from the magnet center to the outer region, in axial and coronal plane. The cross-sectional area error of gluteus maximus muscle and the knee extensors was as high as 9.27% and 3.16% in before and after distortion correction, respectively. Conclusion: The cross-sectional area of the muscles that suffered from the geometrical distortion is necessary to correct for the estimation of the intervention.