• Title/Summary/Keyword: Maximum displacement

Search Result 1,598, Processing Time 0.034 seconds

Structural Durability Analysis According to the Thickness of Bicycle Frame Tube (자전거 프레임 튜브 두께에 따른 구조적 내구성 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.122-129
    • /
    • 2012
  • This study investigates structural and vibration analyses according to the thickness of bicycle frame tube. The model of bicycle frame has the dimension as length of 862mm, width of 100mm and hight of 402.5mm. There are 3 kinds of models with tubes of top, down and seat at bicycle frame as thicknesses of 10, 15 and 20mm. The maximum displacement and stress occur at the center part of seat stay and at the installation part of rear wheel respectively. Maximum displacements become 0.031936, 0.029159 and 0.027984mm in cases of thicknesses of 10, 15 and 20mm respectively. In case of thickness of 20mm among 3 cases, maximum displacement becomes lowest. But maximum stresses become 10.019, 8.5492 and 9.2511MPa in cases of thicknesses of 10, 15 and 20mm respectively. In case of thickness of 15mm among 3 cases, maximum stress becomes lowest. There is no resonance at practical driving conditions and natural frequency remains almost unchanged along the change of thickness. In case of the displacement due to vibration mode, the displacement difference at thickness between 15mm and 20mm becomes 1/2 times than that between 10mm and 15mm. Design at bicycle frame tube becomes most economical and durable effectively in case of thickness of 15mm among 3 cases.

Ductility-based seismic design of precast concrete large panel buildings

  • Astarlioglu, Serdar;Memari, Ali M.;Scanlon, Andrew
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.405-426
    • /
    • 2000
  • Two approximate methods based on mechanism analysis suitable for seismic assessment/design of structural concrete are reviewed. The methods involve use of equal energy concept or equal displacement concept along with appropriate patterns of inelastic deformations to relate structure's maximum lateral displacement to member and plastic deformations. One of these methods (Clough's method), defined here as a ductility-based approach, is examined in detail and a modification for its improvement is suggested. The modification is based on estimation of maximum inelastic displacement using inelastic design response spectra (IDRS) as an alternative to using equal energy concept. The IDRS for demand displacement ductilities are developed for a single degree of freedom model subjected to several accelerograms as functions of response modification factor (R), damping ratios, and strain hardening. The suggested revised methodology involves estimation of R as the ratio of elastic strength demand to code level demand, and determination of design base shear using $R_{design}{\leq}R$ and maximum displacement, determination of plastic displacement using IDRS and subsequent local plastic deformations. The methodology is demonstrated for the case of a 10-story precast wall panel building.

Design Review of Inter-Modal Terminal Platform for Temperature Load (온도하중을 고려한 인터모달 터미널 플랫폼의 설계 검토)

  • Kim, Kyoung-Su;Kim, Da-Ae;Kim, Heung-Rae;Hyun, Eun-Tack
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.305-311
    • /
    • 2019
  • In this study, we examined the proper spacing between the expansion joints according to the temperature load of the inter-modal terminal platform infrastructure to implement a new inter-modal automated freight transport system, which we intend to introduce in Korea. To review the proper expansion joint spacing of the terminal platforms, we set the maximum expansion joint spacing according to the regional temperature changes using the equation proposed by the Federal Construction Council (FCC) of the United States. Then, the maximum displacement value, which was calculated through the structural analysis program, and the limit of the horizontal displacement of the building structure were compared. The proper expansion joint spacing was selected as the slab length at which the maximum displacement of the structure, due to temperature changes, was below the horizontal displacement limit. Based on the application of maximum expansion joint spacing for each region calculated through the FCC's suggestion, the maximum displacement that could occur within the limit of the lateral displacement of the structure was determined.

Fabrication and evaluation of a piezoelectric fan (압전팬의 제작과 평가)

  • Kim, Dae-Young;Choi, Jae-Eup;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.693-696
    • /
    • 2003
  • Piezoelectric ceramics were made by a doctor blade methode and piezoelectric fans were fabricated by sandwiched a slim and long metal between two layers of ceramics. A maximum displacement of piezoelectric fan occurs in the resonance frequency of a long metal and the resonance frequency of them is in inverse proportion to the square of a length of metal. The piezoelectric fan made from a wide and thin piezoelectric ceramics($13{\times}0.2{\times}30mm^3$) showed a maximum displacement in all samples, and the maximum displacement was about 20mm in a commercial power (200V, 60Hz of sine wave).

  • PDF

Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.4
    • /
    • pp.251-262
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Methods: Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were $30^{\circ}$ distally inclined to the axial implants. Vertical and mesiodistal oblique ($45^{\circ}$ angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. Results: The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Conclusions: Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.

Time-Series Interferometric Synthetic Aperture Radar Based on Permanent Scatterers Used to Analyze Ground Stability Near a Deep Underground Expressway Under Construction in Busan, South Korea (고정산란체 기반 시계열 영상레이더 간섭기법을 활용한 부산 대심도 지하 고속화도로 건설 구간의 지반 안정성 분석)

  • Taewook Kim;Hyangsun Han;Siung Lee;Woo-Seok Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.689-699
    • /
    • 2023
  • Assessing ground stability is critical to the construction of underground transportation infrastructure. Surface displacement is a key indicator of ground stability, and can be measured using interferometric synthetic aperture radar (InSAR). This study measured time-series surface displacement using permanent scatterer InSAR applied to Sentinel-1 SAR images acquired from January 2017 to June 2023 for the area around a deep underground expressway under construction to connect Mandeok-dong and Centum City in Busan, South Korea. Regions of seasonal subsidence and uplift were identified, as were regions with severe subsidence after summer 2022. To evaluate stability of the ground in the construction area, the mean displacement velocity, final surface displacement, cumulative surface displacement, and difference between minimum and maximum surface displacement were analyzed. Considering the time-series surface displacement characteristics of the study area, the difference between minimum and maximum surface displacement since June 2022 was found to be the most suitable parameter for evaluating ground stability. The results identified highly unstable ground in the construction area as being to the north of the mid-lower reaches of the Oncheon-cheon River and to the west of the Suyeong River at the point where both rivers meet, with the difference between minimum and maximum surface displacement of 40~60 mm.

Structural Safety Analysis on Car Body at Overturn (전복시 차체에 대한 구조 안전 해석)

  • Cho, Jae-Ung;Kim, Key-Sun;Lee, Eun-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • In this study, the changes of displacement and stress are investigated by structural analysis according to the thickness of car body in case of overturn. In case of 5 mm thickness, the maximum displacement of 7.5024 mm at its right ceiling and the maximum equivalent stress of 113.69 MPa at the left lower part are occurred on the elapsed time of 2 second. In case of 10 mm thickness, the maximum displacement of 1.2557 mm at its right ceiling and the maximum equivalent stress of 15.134 MPa at the left lower part are occurred on the elapsed time of 2 second. In case of 15 mm thickness, the maximum displacement of 0.426067 mm at its right ceiling and the maximum equivalent stress of 4.4842 MPa at the left lower part are occurred on the elapsed time of 2 second. As stress and displacement are uniformly distributed according to time in this case, the design of car body can be stabilized.

Effects of Head Posture on the Rotational Torque Movement of Mandible in Patients with Temporomandibular Disorders (두경부 위치에 따른 측두하악장애환자의 하악 torque 회전운동 분석)

  • Park, Hye-Sook;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.2
    • /
    • pp.173-189
    • /
    • 2000
  • The purpose of this study was to evaluate the effect of specific head positions on the mandibular rotational torque movements in maximum mouth opening, protrusion and lateral excursion. Thirty dental students without any sign or symptom of temporomandibular disorders(TMDs) were included as a control group and 90 patients with TMDs were selected and examined by routine diagnostic procedure for TMDs including radiographs and were classified into 3 subgroups : disc displacement with reduction, disc displacement without reduction, and degenerative joint disease. Mandibular rotational torque movements were observed in four head postures: upright head posture(NHP), upward head posture(UHP), downward head posture(DHP), and forward head posture(FHP). For UHP, the head was inclined 30 degrees upward: for DHP, the head was inclined 30 degrees downward: for FHP, the head was positioned 4cm forward. These positions were adjusted with the use of cervical range-of-motion instrumentation(CROM, Performance Attainment Inc., St. Paul, U.S.A.). Mandibular rotational torque movements were monitored with the Rotate program of BioPAK system (Bioresearch Inc., WI, U.S.A.). The rotational torque movements in frontal and horizontal plane during mandibular border movement were recorded with two parameters: frontal rotational torque angle and horizontal rotational torque angle. The data obtained was analyzed by the SAS/Stat program. The obtained results were as follows : 1. The control group showed significantly larger mandibular rotational angles in UHP than those in DHP and FHP during maximum mouth opening in both frontal and horizontal planes. Disc displacement with reduction group showed significantly larger mandibular rotational angles in DHP and FHP than those in NHP during lateral excursion to the affected and non-affected sides in both frontal and horizontal planes(p<0.05). 2. Disc displacement without reduction group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening as well as lateral excursion to the affected and non-affected sides in both frontal and horizontal planes. Degenerative joint disease group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening, protrusion and lateral excursion in both frontal and horizontal planes(p<0.05). 3. In NHP, mandibular rotational angle of the control group was significantly larger than that of any other patient subgroups. Mandibular rotational angle of disc displacement with reduction group was significantly larger than that of disc displacement without reduction group during maximum mouth opening in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group or degenerative joint disease group during maximum mouth opening in the horizontal plane(p<0.05). 4. In NHP, mandibular rotational angles of disc displacement without reduction group were significantly larger than those of the control group or disc displacement with reduction group during lateral excursion to the affected side in both frontal and horizontal planes. Mandibular rotational angle of disc displacement without reduction group was significantly smaller than that of the control group during lateral excursion to the non-affected side in frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group during lateral excursion to the non-affected side in the horizontal plane(p<0.05). 5. In NHP, mandibular rotational angle of the control group was significantly smaller than that of disc displacement with reduction group or disc displacement without reduction group during protrusion in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of the disc displacement with reduction group or degenerative joint disease group during protrusion in the horizontal plane. Mandibular rotational angle of the control group was significantly smaller than that of disc displacement without reduction group or degenerative joint disease group during protrusion in the horizontal plane(p<0.05). 6. In NHP, disc displacement without reduction group and degenerative joint disease group showed significantly larger mandibular rotational angles during lateral excursion to the affected side than during lateral excursion to the non-affected side in both frontal and horizontal planes(p<0.05). The findings indicate that changes in head posture can influence mandibular rotational torque movements. The more advanced state is a progressive stage of TMDs, the more influenced by FHP are mandibular rotational torque movements of the patients with TMDs.

  • PDF

On a Method for the Durability Enhancement of Plastic Spur Gear Using Finite Element Analysis (유한요소해석에 의한 플라스틱 스퍼기어의 내구성 향상방안 연구)

  • Kim, Choong-Hyun;Ahn, Hyo-Sok;Chong, Tae-Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.223-230
    • /
    • 2003
  • Stress patterns are created in the plastic spur gear tooth body by introducing a hole or a steel pin to improve stress distribution. Static analysis using finite element method is carried out to show the effect. The result shows that maximum stress as well as tooth tip displacement is dependent on the size and location of a hole or a steel pin. When a hole located on the tooth center line, the maximum static stress level and the tooth tip deflection is always higher than that of a solid gear. But, a considerable reduction in the maximum stress and tooth tip displacement is achieved by insertion of steel pin.

An Experimental and Numerical Study on the Behavior Characteristics of Single-span Plastic Greenhouse under Snow Load (적설하중 재하실험과 구조해석을 통한 단동 비닐하우스의 거동 연구)

  • Song, Hosung;Kim, Yu-Yong;Yu, Seok-Cheol;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.45-53
    • /
    • 2022
  • In this study, the loading test and structural analysis were performed on the snow load and the results were compared. The load plates were loaded on the roof surface of the model, and structural analysis was performed under the same conditions. The result of loading test, the maximum displacement was observed in the center of the top, and the maximum stress was observed near the bottom point. Displacement and stress were found to have a high linear relationship with the load. Comparing the structural analysis results with the loading test results, the maximum displacement difference is 4.5% and the maximum stress difference is 10.2%. It is expected that closer results can be derived if the boundary conditions for the longitudinal direction of the model are clarified during experiments and analysis.