• Title/Summary/Keyword: Maximum damage

Search Result 1,334, Processing Time 0.03 seconds

Evaluation of Installation Damage Factor for Geogrid with Particle Size (입도에 따른 지오그리드의 시공손상계수 산정)

  • Lim, Seong-Yoon;Song, Chang-Seop
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Reduction factor for installation damage required to calculate design strength of geogrid used in MSEW(mechanically stabilized earth wall) design is usually obtained in the field test simulating real construction condition. However, damages occurred in geogrid during backfill work are influenced by many factors such as polymer types, unit weight per area, backfill construction method and gradation of backfill material and field test considering these factors demand lots of time and costs. In this study, factors affecting installation damage are analyzed and empirical method to evaluate reduction factor for installation damage using maximum particle size in backfill material is suggested.

Durability Analysis on Fatigue of Caliper Cylinder (캘리퍼 실린더의 피로에 대한 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.208-213
    • /
    • 2015
  • In this study, two models due to the configuration of caliper cylinder among the parts of automotive brake system are studied by structural and fatigue analysis. As the maximum equivalent stress at model 2 becomes 1.5 times lower than model 1, model 2 can endure load higher than model 1. In case of fatigue damage analysis on model 1 and 2, model 1 has the damage area more than model 2. Fatigue damage at model 1 happen more than model 2. These study results can be effectively utilized with the design on caliper cylinder by anticipating prevention against its damage and investigating durability.

Damage assessment for buried structures against internal blast load

  • Ma, G.W.;Huang, X.;Li, J.C.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.301-320
    • /
    • 2009
  • Damage assessment for buried structures against an internal blast is conducted by considering the soil-structure interaction. The structural element under analysis is assumed to be rigid-plastic and simply-supported at both ends. Shear failure, bending failure and combined failure modes are included based on five possible transverse velocity profiles. The maximum deflections with respect to shear and bending failure are derived respectively by employing proper failure criteria of the structural element. Pressure-Impulse diagrams to assess damage of the buried structures are subsequently developed. Comparisons have been done to evaluate the influences of the soil-structure interaction and the shear-to-bending strength ratio of the structural element. A case study for a buried reinforced concrete structure has been conducted to show the applicability of the proposed damage assessment method.

Fragility analysis of R/C frame buildings based on different types of hysteretic model

  • Borekci, Muzaffer;Kircil, Murat S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.795-812
    • /
    • 2011
  • Estimation of damage probability of buildings under a future earthquake is an essential issue to ensure the seismic reliability. Fragility curves are useful tools for showing the probability of structural damage due to earthquakes as a function of ground motion indices. The purpose of this study is to compare the damage probability of R/C buildings with low and high level of strength and ductility through fragility analysis. Two different types of sample buildings have been considered which represent the building types mentioned above. The first one was designed according to TEC-2007 and the latter was designed according to TEC-1975. The pushover curves of sample buildings were obtained via pushover analyses. Using 60 ground motion records, nonlinear time-history analyses of equivalent single degree of freedom systems were performed using bilinear hysteretic model and peak-oriented hysteretic model with stiffness - strength deterioration for each scaled elastic spectral displacement. The damage measure is maximum inter-story drift ratio and each performance level considered in this study has an assumed limit value of damage measure. Discrete damage probabilities were calculated using statistical methods for each considered performance level and elastic spectral displacement. Consequently, continuous fragility curves have been constructed based on the lognormal distribution assumption. Furthermore, the effect of hysteresis model parameters on the damage probability is investigated.

Contact Pressure Effect on Fretting Fatigue of Aluminum Alloy A7075-T6 (알루미늄 합금 A7075-T6의 프레팅 피로에서 접촉압력의 영향)

  • Cho, Sung-San;Hwang, Dong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.531-537
    • /
    • 2012
  • Fretting fatigue tests were conducted to investigate the effect of contact pressure on fretting fatigue behavior in aluminum alloy A7075-T6. Test results showed that when the contact pressure is so low that gross or partial slip occurs at the pad/specimen interface, fretting fatigue damage increases with the contact pressure. However, when the contact pressure is high enough to prevent slip at the interface, fretting fatigue damage decreases with the contact pressure. In order to understand how the contact pressure influence the fretting fatigue damage, finite element analyses were conducted and the analysis results were used to evaluate critical plane fretting fatigue damage parameters and their components. It is revealed that fretting fatigue damage estimated with the parameters exhibits the same variation as that in the tests. Moreover, the variation of fretting fatigue damage is closely related with that of the maximum normal stress on the critical plane rather than the strain amplitude on the critical plane.

Correlation between parameters of pulse-type motions and damage of low-rise RC frames

  • Cao, Vui Van;Ronagh, Hamid Reza
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.365-384
    • /
    • 2014
  • The intensity of a ground motion can be measured by a number of parameters, some of which might exhibit robust correlations with the damage of structures subjected to that motion. In this study, 204 near-fault pulse-type records are selected and their seismic parameters are determined. Time history and damage analyses of a tested 3-storey reinforced concrete frame representing for low-rise reinforced concrete buildings subjected to those earthquake motions are performed after calibration and comparison with the available experimental results. The aim of this paper is to determine amongst several available seismic parameters, the ones that have strong correlations with the structural damage measured by a damage index and the maximum inter-story drift. The results show that Velocity Spectrum Intensity is the leading parameter demonstrating the best correlation, followed by Housner Intensity, Spectral Acceleration and Spectral Displacement. These seismic parameters are recommended as reliable parameters of near-fault pulse-type motions related to damage potential of low-rise reinforced concrete structures. The results also reaffirm that the conventional and widely used parameter of Peak Ground Acceleration does not exhibit a good correlation with the structural damage.

Damage potential: A dimensionless parameter to characterize soft aircraft impact into robust targets

  • Hlavicka-Laczak, Lili E.;Kollar, Laszlo P.;Karolyi, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • To investigate numerically the effect of all parameters on the outcome of an aircraft impact into robust engineering structures like nuclear power plant containments is a tedious task. In order to reduce the problem to a manageable size, we propose a single dimensionless parameter, the damage potential, to characterize the main features of the impact. The damage potential, which is the ratio of the initial kinetic energy of the aircraft to the work required to crush it, enables us to find the crucial parameter settings that need to be modelled numerically in detail. We show in this paper that the damage potential is indeed the most important parameter of the impact that determines the time-dependent reaction force when either finite element (FE) modelling or the Riera model is applied. We find that parameters that do not alter the damage potential, like elasticity of the target, are of secondary importance and if parameters are altered in a way that the damage potential remains the same then the course of the impact remains similar. We show, however, that the maximum value of the reaction force can be higher in case of elastic targets than in case of rigid targets due to the vibration of the target. The difference between the Riera and FE model results is also found to depend on the damage potential.

Impact of initial damage path and spectral shape on aftershock collapse fragility of RC frames

  • Liu, Yang;Yu, Xiao-Hui;Lu, Da-Gang;Ma, Fu-Zi
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.529-540
    • /
    • 2018
  • The influences of initial damage paths and aftershock (AS) spectral shape on the assessment of AS collapse fragility are investigated. To do this, a four-story ductile reinforced concrete (RC) frame structure is employed as the study case. The far-field earthquake records recommended by FEMA P695 are used as AS ground motions. The AS incremental dynamic analyses are performed for the damaged structure. To examine the effect of initial damage paths, a total of six kinds of initial damage paths are adopted to simulate different initial damage states of the structure by pushover analysis and dynamic analysis. For the pushover-based initial damage paths, the structure is "pushed" using either uniform or triangle lateral load pattern to a specified damage state quantified by the maximum inter-story drift ratio. Among the dynamic initial damage paths, one single mainshock ground motion or a suite of mainshock ground motions are used in the incremental dynamic analyses to generate a specified initial damage state to the structure. The results show that the structure collapse capacity is reduced as the increase of initial damage, and the initial damage paths show a significant effect on the calculated collapse capacities of the damaged structure (especially at severe damage states). To account for the effect of AS spectral shape, the AS collapse fragility can be adjusted at different target values of ${\varepsilon}$ by using the linear correlation model between the collapse capacity (in term of spectral intensity) and the AS ${\varepsilon}$ values, and coefficients of this linear model is found to be associated with the initial damage states.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

Probabilistic Neural Network-Based Damage Assessment for Bridge Structures (확률신경망에 기초한 교량구조물의 손상평가)

  • Cho, Hyo-Nam;Kang, Kyoung-Koo;Lee, Sung-Chil;Hur, Choon-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.169-179
    • /
    • 2002
  • This paper presents an efficient algorithm for the estimation of damage location and severity in structure using Probabilistic Neural Network (PNN). Artificial neural network has been being used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training data for neural network learning and ambiguity in the relation of neural network architecture with convergence of solution. In this paper, PNN is used as a pattern classifier to overcome those problems in the conventional neural network. The basic idea of damage assessment algorithm proposed in this paper is that modal characteristics from a damaged structure are compared with the training patterns which represent the damage in specific element to determine how close it is to training patterns in terms of the probability from PNN. The training pattern that gives a maximum probability implies that the element used in producing the training pattern is considered as a damaged one. The proposed damage assessment algorithm using PNN is applied to a 2-span continuous beam model structure to verify the algorithm.