• Title/Summary/Keyword: Maximum covering problem

Search Result 14, Processing Time 0.027 seconds

Optimal Location of Expressway Patrol Vehicle Stations Using Maximum Covering and Weighted p-Center Problems (Maximum Covering 문제와 Weighted p-Center 문제를 이용한고속도로 순찰대 최적 입지 결정)

  • Kim, Myeonghyeon;Kim, Hyo-Seung;Kim, Dong-Kyu;Lee, Chungwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • This paper aims to determine the optimal location of expressway patrol vehicle stations that minimizes additional troubles caused by the delay of crash treatments. To do this, we formulate a maximum covering problem and a p-center problem weighted by crash frequency, using the shortest distance as the criteria for allocating service district, and we employ the Lagrangian relaxation algorithm to solve the former and Daskin's heuristic algorithm to solve the latter, respectively. Based on crash data of Korean expressways, the results from the proposed models are compared with the current location of patrol vehicle stations by using several indices as the level of service for crash treatment, such as maximum crash-weighted distance, average crash-weighted distance, and average access distance. The results show that the proposed models improve average access distance and time by about 10km and 10min, respectively. When allocation for service district is changed only with the fixed current location, the level of service can be also improved. The models and results proposed in this paper can contribute to improving the level of service for crash treatment on expressways. They can also provide the theoretical basis on the location decision for other various emergency facilities, and the allocation decision for floating service districts according to time-period crash data.

COMPOUNDED METHOD FOR LAND COVERING CLASSIFICATION BASED ON MULTI-RESOLUTION SATELLITE DATA

  • HE WENJU;QIN HUA;SUN WEIDONG
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.116-119
    • /
    • 2005
  • As to the synthetical estimation of land covering parameters or the compounded land covering classification for multi-resolution satellite data, former researches mainly adopted linear or nonlinear regression models to describe the regression relationship of land covering parameters caused by the degradation of spatial resolution, in order to improve the retrieval accuracy of global land covering parameters based on 1;he lower resolution satellite data. However, these methods can't authentically represent the complementary characteristics of spatial resolutions among different satellite data at arithmetic level. To resolve the problem above, a new compounded land covering classification method at arithmetic level for multi-resolution satellite data is proposed in this .paper. Firstly, on the basis of unsupervised clustering analysis of the higher resolution satellite data, the likelihood distribution scatterplot of each cover type is obtained according to multiple-to-single spatial correspondence between the higher and lower resolution satellite data in some local test regions, then Parzen window approach is adopted to derive the real likelihood functions from the scatterplots, and finally the likelihood functions are extended from the local test regions to the full covering area of the lower resolution satellite data and the global covering area of the lower resolution satellite is classified under the maximum likelihood rule. Some experimental results indicate that this proposed compounded method can improve the classification accuracy of large-scale lower resolution satellite data with the support of some local-area higher resolution satellite data.

  • PDF

EDGE COVERING COLORING OF NEARLY BIPARTITE GRAPHS

  • Wang Ji-Hui;Zhang Xia;Liu Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.435-440
    • /
    • 2006
  • Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge cover of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge covers which form a partition of E(G) is called edge covering chromatic number of G, denoted by X'c(G). It is known that for any graph G with minimum degree ${\delta},\;{\delta}-1{\le}X'c(G){\le}{\delta}$. If $X'c(G) ={\delta}$, then G is called a graph of CI class, otherwise G is called a graph of CII class. It is easy to prove that the problem of deciding whether a given graph is of CI class or CII class is NP-complete. In this paper, we consider the classification of nearly bipartite graph and give some sufficient conditions for a nearly bipartite graph to be of CI class.

A Optimal Facility Location Using Set Covering and Minisum (Application to Optimal Location of 119 Eru) (Set Covering과 Minisum 기법을 활용한 시설물 최적위치 선정에 관한 연구 (119 구급대 위치선정사례에의 적용))

  • O, Se-Chang;Kim, Jeong-Min
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.103-113
    • /
    • 2009
  • Quick accident spot reaching of 119ERU is the most important role in decrease of accident depth. If 4 minutes of wounded person pass after cardiac arrest, brain damage is begun. and If 10 minutes of wounded person pass after cardiac arrest, possibility to die rises. Accordingly, when establish 119ERU, need to consider travel time to traffic accidents spot. This treatise groped a facility location problem using SCLM and minisum location problem mutually. And existent minisum location problem has a problem that maximum travel time exceed $\lambda$. ERU to need in present situation and also can reduce average travel time. so this treatise propose modified minisum location problem. In case applying modified minisum location theory, 119ERU can arrive all demand and that is optimized about demand and travel time. Can minimise figure of 119 first aids to need in present situation applying this way, and also can reduce average passing time. Finally, this way can minimise figure of 119ERU to need in present situation and also can reduce average travel time.

A Study on a Real Time Freight Delivery Planning for Supply Center based on GIS (GIS기반의 실시간 통합화물운송시스템 계획에 관한 연구)

  • 황흥석;김호균;조규성
    • Korean Management Science Review
    • /
    • v.19 no.2
    • /
    • pp.75-89
    • /
    • 2002
  • According to the fast-paced environment of information technology and improving customer services, the design activities of logistics systems improve customer centric services and delivery performance implementing e-logistics system. The fundamental design issues that arise in the delivery system planning are optimizing the system with minimum cost and maximum throughput and service level. This study is concerned with the integrated model development of delivery system with customer responsive service level for DCM, Demand Chain Management. We used a two-step approach for this study. First, we formulated the supply. center facility planning using stochastic set-covering problem and assigned the customers to the supply center using clustering algorithm. Second, we developed vehicle delivery planning for a supply center based on GIS, GIS-VRP. Also we developed a GUI-type computer program for proposed method for supply center problem using GIS and Geo-DataBase of Busan area. The computational results showed that the proposed method was very effective on a set of test problems.

An Enhanced Scheme of Target Coverage Scheduling m Rotatable Directional Sensor Networks (회전 가능한 방향센서네트워크에서 타겟 커버리지 스케줄링 향상 기법)

  • Kim, Chan-Myung;Han, Youn-Hee;Gil, Joon-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8A
    • /
    • pp.691-701
    • /
    • 2011
  • In rotatable directional sensor networks, maximizing network lifetime while covering all the targets and forwarding the sensed data to the sink is a challenge problem. In this paper, we address the Maximum Directional Cover Tree (MDCT) problem of organizing the directional sensors into a group of non-disjoint subsets to extend the network lifetime. Each subset in which the directional sensors cover all the targets and forward the sensed data to the sink is activated at one time. For the MDCT problem, we first present an energy consumption model which mainly takes into account the energy consumption for rotation work. We also develop the Directional Coverage and Connectivity (DCC)-greedy algorithm to solve the MDCT problem. To evaluate the algorithm, we conduct simulations and show that it can extend the network lifetime.

Additional Vessel Traffic Services (VTSs) Location Problem for Maximizing Control Area Subject to Budget Limitation (예산 제약하 관제구역 최대화를 위한 추가적인 해상교통관제서비스(VTS)의 입지 선정 문제)

  • Han, Junsoo;Kim, Hyunwoo;Jung, Seungeun;Lee, Jinho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.296-304
    • /
    • 2015
  • Vessel Traffic Service (VTS) is the service that provides ships navigating on a sea transportation route with guidance and advice about geographical environment and other attentive information for their safety. In this study we point out that currently, constructing additional VTSs is required to prevent ships from unexpected accident on their navigation. We first select several candidate locations for constructing VTSs, based on the amount of marine transportation and its potential development possibility. Then, we present an optimization model in which the maximum area coverage is achieved by determining new locations of VTS subject to budget limitation. The problem can be modeled as a binary integer program and it provides an optimal solution for new VTS locations to be constructed under the consideration of the currently located VTSs in Korea.

Competitive Algorithm of Set Cover Problem Using Inclusion-Exclusion Principle (포함-배제 원리를 적용한 집합피복 문제의 경쟁 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.165-170
    • /
    • 2023
  • This paper proposes an algorithm that can obtain a solution with linear time for a set cover problem(SCP) in which there is no polynomial time algorithm as an NP-complete problem so far. Until now, only heuristic greed algorithms are known to select sets that can be covered to the maximum. On the other hand, the proposed algorithm is a competitive algorithm that applies an inclusion-exclusion principle rule to N nodes up to 2nd or 3rd in the maximum number of elements to obtain a set covering all k nodes, and selects the minimum cover set among them. The proposed algorithm compensated for the disadvantage that the greedy algorithm does not obtain the optimal solution. As a result of applying the proposed algorithm to various application cases, an optimal solution was obtained with a polynomial time of O(kn2).

Algorithm Based on Cardinality Number of Exact Cover Problem (완전 피복 문제의 원소 수 기반 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.185-191
    • /
    • 2023
  • To the exact cover problem that remains NP-complete to which no polynomial time algorithm is made available, this paper proposes a linear time algorithm that yields an optimal solution. The proposed algorithm makes use of the set cover problem's major feature which states that "no identical element shall be included in more than one covering set". To satisfy this criterion, the proposed algorithm initially selects a subset with the minimum cardinality and deletes those that contain the cardinality identical to that of the selected subset. This process is repeatedly performed on remaining subsets until the final solution is obtained. Provided that the solution is unattainable, it selects subsets with the maximum cardinality and repeats the same process. The proposed algorithm has not only obtained the optimal solution with ease but also proved its wide applicability on N-queens problems, hence disproving the NP-completeness of the exact cover problem.

Pin Power Reconstruction of HANARO Fuel Assembly via Gamma Scanning and Tomography Method

  • Seo, Chul-Gyo;Park, Chang-Je;Cho, Nam-Zin;Kim, Hark-Rho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2001
  • To determine the pin power distribution without disassembling, HANARO fuel assemblies are gamma-scanned and then the distribution is reconstructed tv using the tomography method. The iterative least squares method (ILSM and the wavelet singular value decomposition method (WSVD) are chosen to solve the problem. An optimal convergence criterion is used to stop the iteration algorithm to overcome the potential divergence in ILSM. WSVD gives better results than ILSM , and the average values from the two methods give the best results. The RMSE (root mean square errors) to the reference data are 5.1, 6.6, 5.0, 6.5, and 6.4% and the maximum relative errors are 10.2, 13.7, 12.2, 13.6, and 14.3%, respectively. It is found that the effect of random positions of the pins is important. Although the effect can be accommodated by the iterative calculations simulating the random positions, the use of experimental equipment with a slit covering the whole range of the assembly horizontally is recommended to obtain more accurate results. We made a new apparatus using the results of this study and are conducting an experiment in order to obtain more accurate results.

  • PDF