• Title/Summary/Keyword: Maximum boost control

Search Result 120, Processing Time 0.025 seconds

Backstepping Control of a Buck-Boost Converter in an Experimental PV-System

  • Vazquez, Jesus R.;Martin, Aranzazu D.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1584-1592
    • /
    • 2015
  • This paper presents a nonlinear method to control a DC-DC converter and track the Maximum Power Point (MPP) of a Photovoltaic (PV) system. A backstepping controller is proposed to regulate the voltage at the input of a buck-boost converter by means of Lyapunov functions. To make the control initially faster and avoid local maximum, a regression plane is used to estimate the reference voltages that must be obtained to achieve the MPP and guarantee the maximum power extraction, modifying the conventional Perturb and Observe (P&O) method. An experimental platform has been designed to verify the validity and performance of the proposed control method. In this platform, a buck-boost converter has been built to extract the maximum power of commercial solar modules under different environmental conditions.

The MPPT Control Method of The Seaflow Generation by Using Buck-boost Converter (buck-boost 컨버터을 이용한 조류 발전의 MPPT제어)

  • Kim, Cheon-Kyu;Yang, Lee-Woo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.151-153
    • /
    • 2007
  • In this paper, the control method of extracting maximum power from the seaflow energy is proposed. This system consists of buck-boost converter, bridge diode. The control is performed by using the variable duty ratio control of buck-boost converter. For extracting maximum power, it is necessary to know the seaflow turbine's maximum power curve and the seaflow speed measurement. But this makes the system difficult and expensive to implement. So this paper proposes the MPPT control method where the seaflow speed and the maximum power curve of the seaflow turbine are not required. The effectiveness of algorithm is simulated based on Matlab $Simulink^{(R)}$.

  • PDF

Maximum Boost Space Vector Pulse-Width Modulation Strategy of Z-Source Inverters

  • Kim, Seong Hwan;Park, Jang Hyun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • In this paper, maximum boost space vector pulse-width modulation(MBSVPWM) strategy of Z-Source Inverters(ZSIs) is proposed. Conventional space vector pulse-width modulation(SVPWM) method of Voltage Source Inverters(VSIs) is modified to produce unique PWM patterns that realize the maximum boost control of ZSIs. This proposed method minimizes the switching power losses of ZSIs by reducing the numbers of the shoot-through states. Moreover, some switches keep ON state and the switching transitions do not occur during the specific sectors. An experimental system has been built and tested to verify the effectiveness of the proposed strategy.

Maximum Boost Discrete PWM method of Z-Source Inverters (Z-소스 인버터의 최대승압 불연속 PWM 방법)

  • Kim, Seonghwan;Park, Janghyun;park, Taesik
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.166-169
    • /
    • 2017
  • In this paper, maximum boost discrete PWM(DPWM) method of Z-Source Inverter(ZSI) is proposed. In general, a DPWM method is used to reduce the switching losses of the inverters and increase the efficiencies. The maximum boost PWM method of Z-Source Inverters is combined with the DPWM method. The proposed Maximum boost DPWM of ZSI is analyzed and it shows how to reduce the switching losses of ZSI. An experimental system has been built and tested to verify the effectiveness of the proposed method.

Sensorless MPPT Control using a Boost Converter and a Grid Side Inverter in Wind Power Generation Systems (Boost 컨버터와 계통연계 인버터를 이용한 풍력발전의 센서리스 MPPT 제어)

  • Kim, Do-Yoon;Lee, Jun-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1372-1377
    • /
    • 2011
  • This paper proposes the control method of MPPT(maximum power point tracking) for the wind energy generation system using the duty ratio control of boost type DC-DC converter. For a lower cost and a higher reliability, the wind and the generator velocity sensors are removed. MPPT control is implemented by changing the duty ratio of the boost converter. Chain rule is applied by using each function. The grid side inverter is controlled to regulate unity power factor. The proposed control method was analyzed mathematically and verified by the computer simulation using PSIM.

Novel Predictive Maximum Power Point Tracking Techniques for Photovoltaic Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Haruna, Junnosuke
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.277-286
    • /
    • 2016
  • This paper offers two Maximum Power Point Tracking (MPPT) systems for Photovoltaic (PV) applications. The first MPPT method is based on a fixed frequency Model Predictive Control (MPC). The second MPPT technique is based on the Predictive Hysteresis Control (PHC). An experimental demonstration shows that the proposed techniques are fast, accurate and robust in tracking the maximum power under different environmental conditions. A DC/DC converter with a high voltage gain is obligatory to track PV applications at the maximum power and to boost a low voltage to a higher voltage level. For this purpose, a high gain Switched Inductor Quadratic Boost Converter (SIQBC) for PV applications is presented in this paper. The proposed converter has a higher gain than the other transformerless topologies in the literature. It is shown that at a high gain the proposed SIQBC has moderate efficiency.

Efficiency Improvement of Synchronous Boost Converter with Dead Time Control for Fuel Cell-Battery Hybrid System

  • Kim, Do-Yun;Won, Il-Kuen;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1891-1901
    • /
    • 2017
  • In this paper, optimal control of the fuel cell and design of a high-efficiency power converter is implemented to build a high-priced fuel cell system with minimum capacity. Conventional power converter devices use a non-isolated boost converter for high efficiency while the battery is charged, and reduce its conduction loss by using MOSFETs instead of diodes. However, the efficiency of the boost converter decreases, since overshoot occurs because there is a moment when the body diode of the MOSFET is conducted during the dead time and huge loss occurs when the dead time for the maximum-power-flowing state is used in the low-power-flowing state. The method proposed in this paper is to adjust the dead time of boost and rectifier switches by predicting the power flow to meet the maximum efficiency in every load condition. After analyzing parasite components, the stability and efficiency of the high-efficiency boost converter is improved by predictive compensation of the delay component of each part, and it is proven by simulation and experience. The variation in switching delay times of each switch of the full-bridge converter is compensated by falling time compensation, a control method of PWM, and it is also proven by simulation and experience.

Design of Micro Energy Harvesting System using Thermoplastic Polyurethane and Buck-boost Converter (열가소성 폴리우레탄과 벅-부스트 컨버터를 이용한 마이크로 에너지 포집시스템 설계)

  • Son, Young-Dae;Kim, Gue-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.560-565
    • /
    • 2011
  • This paper proposes the design of micro energy harvesting system by using thermoplastic polyurethane(TPU), which harvests electric energy from the kinetic energy of pedestrian and drives the desired load, and applied it to the self-generating shoes. Also, we designed the buck-boost converter in discontinuous conduction mode(DCM) which functions as a resistor emulator(RE) such that converter's average input current is proportional to input voltage, and it results in transfer of maximum power to buck-boost converter according to control behavior that converter's input resistance is matched with TPU's internal resistance. Therefore, this paper confirms the validity of proposed control scheme and possibility of application for self-generating shoes, from the obtained characteristic of designed micro energy harvesting system by using a TPU and buck-boost converter in DCM.

Maximum Power Point Tracker for Permanent Magnet Synchronous Generator Based Wind Energy System using Fuzzy Logic Algorithm

  • Putri, Adinda Ihsani;Sastrowijoyo, Fajar;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.93-94
    • /
    • 2011
  • The use of boost chopper in Permanent Magnet Synchronous Generator (PMSG) aims to capture maximum power at any wind speed condition. It is reached by adjusting the duty cycle of boost chopper. In this paper, fuzzy logic algorithm is used to find the duty cycle value which yields the maximum power output. This control scheme is verified by PSIM simulation. Another MPPT method is also simulated as a comparison.

  • PDF

Boost Converter Modeling of Photovoltaic System Using PWM Switch Model (PWM 스윗치 모델을 이용한 PV용 Boost Converter Modelling)

  • Kim, H.J.;Lee, K.O.;Choi, J.Y.;Jung, Y.S.;Yu, G.J.;Kwon, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.286-293
    • /
    • 2002
  • Photovoltaic systems normally use a maximum power point tracking (MPPT) technique to continuously deliver the highest possible power to the load when variations in the insolation and temperature occur. A simple method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these Points is presented through deriving small-signal model and transfer function of boost converter. This paper aims at modeling boost converter including equivalent series resistance of input reservoir capacitor by state-space-averaging method and PWM switch model. In the future, properly designed controller for compensation will be constructed in real system for maximum photovoltaic power tracking control.

  • PDF