• 제목/요약/키워드: Maximum axial load

검색결과 248건 처리시간 0.019초

Design of boundary combined footings of trapezoidal form using a new model

  • Rojas, Arnulfo Luevanos
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.745-765
    • /
    • 2015
  • This paper presents the design of reinforced concrete combined footings of trapezoidal form subjected to axial load and moments in two directions to each column using a new model to consider soil real pressure acting on the contact surface of the footing; such pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column. The classical model considers an axial load and moment around the axis "X" (transverse axis) applied to each column, and when the moments in two directions are taken into account, the maximum pressure throughout the contact surface of the footing is considered the same. The main part of this research is that the proposed model considers soil real pressure and the classical model takes into account the maximum pressure, and also is considered uniform. We conclude that the proposed model is more suited to the real conditions and is more economical.

Seismic performance of exterior R/C beam-column joint under varying axial force

  • Hu, Yanbing;Maeda, Masaki;Suzuki, Yusuke;Jin, Kiwoong
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.623-635
    • /
    • 2021
  • Previous studies have suggested the maximum experimental story shear force of beam-column joint frame does not reach its theoretical value due to beam-column joint failure when the column-to-beam moment capacity ratio was close to 1.0. It was also pointed out that under a certain amount of axial force, an axial collapse and a sudden decrease of lateral load-carrying capacity may occur at the joint. Although increasing joint transverse reinforcement could improve the lateral load-carrying capacity and axial load-carrying capacity of beam-column joint frame, the conditions considering varying axial force were still not well investigated. For this purpose, 7 full-scale specimens with no-axial force and 14 half-scale specimens with varying axial force are designed and subjected to static loading tests. Comparing the experimental results of the two types of specimens, it has indicated that introducing the varying axial force leads to a reduction of the required joint transverse reinforcement ratio which can avoid the beam-column joint failure. For specimens with varying axial force, to prevent beam-column joint failure and axial collapse, the lower limit of joint transverse reinforcement ratio is acquired when given a column-to-beam moment capacity ratio.

수직력하에서 임프란트 나사형태에 따른 응력의 3차원 유한요소법적 분석 (THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS ACCORDING TO IMPLANT THREAD DESIGN UNDER THE AXIAL LOAD)

  • 김우택;차용두;오세종;박상수;김현우;박양호;박준우;이건주
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권2호
    • /
    • pp.111-117
    • /
    • 2001
  • There are three designs of thread form in screw type implants: V-thread, Reverse buttress thread and Square thread. The purpose of this study was to find out how thread form designs have an influence on the equivalent stress, equivalent strain, maximum shear stress and maximum shear strain and which design of thread form generates more maximum equivalent stress and strain. 3-D finite element analysis was used to evaluate the stress and strain patterns of three tread types. The results of this study were as follow. 1. Under the 200N of axial load, the value of maximum equivalent stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 2. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and smallest in square thread. 3. Under the 200N of axial load, the value of maximum shear stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 4. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and there is no significant difference between that of square thread and reverse buttress thread. 5. Above results show that the square thread has special advantages in stress and strain compared with other thread types, especially in shear stess which is most determinant to implant-bone interface. Considering the superior biomechanical properties of square form implant, we presume that square form implant has better clinical results than the other types of implants in the same clinical conditions.

  • PDF

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

차량 배기관용 V-Insert 클램프의 체결 성능 평가 (Characterization of V-Insert Clamp Joint Applied to Automobile Exhaust Pipes)

  • 황영은;윤성호
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.208-213
    • /
    • 2012
  • In this study, the mechanical joint performance of the V-Insert clamp applied to automobile exhaust pipes was evaluated through the experimental investigation of its axial load capacity. The axial load of the V-Insert clamp was also determined by using theoretical equations presented by Shoghi and compared with the experimental results. As results of the theoretical prediction, the axial load of the V-Insert clamp tended to increase along with smaller angle of the V-Insert segment and the lower friction coefficient between the V-Insert segment and exhaust pipes. The experimental results under tightening effects were similar to the theoretical results and the axial load of the V-Insert clamp presented maximum values in the range of all torques at distance of 2mm between each exhaust pipes. The experimental results under loading effects were similar to the theoretical results in the range of lower torques but deviated from the theoretical results in the range of higher torques. These results would be beneficial to improve the joint and sealing performance of the V-Insert clamp.

사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(IV) - 압축정재하시험 및 양방향재하시험 자료 분석을 통한 매입 PHC말뚝의 장기허용압축하중의 실증 성능 검증 - (Study(IV) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Field Verification of Long-term Allowable Compressive Load of PHC Piles by Analyzing Pile Load Test Results -)

  • 이원제;김채민;윤도균;최용규
    • 한국지반공학회논문집
    • /
    • 제35권9호
    • /
    • pp.29-36
    • /
    • 2019
  • 직경 500mm 및 직경 600mm PHC말뚝 A종의 파괴 압축하중($P_n$)은 각각 7.7MN 및 10.6MN으로 계산할 수 있었다. 직경 500mm 및 직경 600mm 매입 PHC말뚝 A종에 대한 압축정재하시험 시 말뚝 두부에 재하된 최대 압축하중은 6.9MN 및 8.8MN으로 측정할 수 있었으며 따라서 이 측정하중은 각각 $P_n$의 90% 및 83% 수준이었다. 직경 500mm 및 직경 600mm PHC말뚝 A종의 장기허용압축하중($P_a$)은 각각 1.7MN 및 2.3MN이었다. 모든 사례 매입 PHC말뚝의 양방향재하시험 자료로부터 계산된 지반의 허용지지력은 국내 현행 설계에서 사용하고 있는 극한지지력 산정공식으로 계산한 지반의 허용지지력보다 높은 수준으로 계산되었다. 따라서 매입 PHC말뚝의 설계에서 사용하는 극한지지력 산정공식은 매입 PHC말뚝의 실제 지지력 거동을 모사할 수 있도록 개선하여야 할 것으로 판단되었다.

비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석 (Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis)

  • 이승훈;김한수
    • 한국전산구조공학회논문집
    • /
    • 제35권3호
    • /
    • pp.141-148
    • /
    • 2022
  • 본 논문에서는 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동을 분석하였다. 기본적인 폭발하중을 받는 패널 실험 데이터, 축하중과 폭발하중을 받는 철근콘크리트 기둥 실험데이터를 이용하여 비선형 동적해석 모델링을 검증하였다. 축하중의 적용에 있어서 Autodyn은 동적해석만을 위한 프로그램이기 때문에 축하중과 같은 정적 하중에 대한 초기 응력 상태를 모사하는 해석 절차를 제시하였다. 축하중비 0%~70% 구간과 TNT 등가량에 의존한 환산거리 1.1~2.0에 해당하는 매개변수를 선정하여 총 80개의 비선형 동적 유한요소해석을 진행하였다. 축하중비와 환산거리의 변화를 통해 손상정도와 최대 변위 및 회전각으로 구조 거동을 비교 분석한 결과로 원거리 폭발하중에서 축하중을 받는 기둥의 강성 증가로 최대 변위가 감소한다. 결과적으로 축하중비 10%~30%, 30%~50%, 50% 이상의 영역 3가지로 구조적 거동 분류가 가능함에 따라 내폭 설계 모델 개발에 활용될 수 있을 것으로 보인다.

탄소섬유쉬트로 보강된 각형 CFT기둥의 실험 및 설계식 (The Experiment and Design Formula of Rectangular CFT Columns Reinforced by Carbon Fiber Sheets)

  • 박재우;정성훈
    • 한국산학기술학회논문지
    • /
    • 제11권10호
    • /
    • pp.4024-4030
    • /
    • 2010
  • 본 연구에서는 FRP 보강된 각형 CFT기둥의 중심축하중 실험과 이력거동실험을 수행하였다. 실험변수는 중심축하중 실험에서는 폭-두께비, FRP보강겹수이며, 이력실험에서는 콘크리트 강도와 FRP 보강겹수이다. 실험체의 내력과 연성능력을 정리하였고, FRP로 보강된 각형 CFT기둥의 압축내력 설계식을 제안한다.

자동차용 휠의 내구성능 예측을 위한 복합축 응력해석 및 실험적 검증 (Multi-axial Stress Analysis and Experimental Validation to Estimate of the Durability Performance of the Automotive Wheel)

  • 정성필;정원선;박태원
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.875-882
    • /
    • 2011
  • In this paper, the finite element analysis model of the mult-axial wheel durability test configuration is created using SAMCEF. Mooney-Rivlin 2nd model is applied to the tire model, and the variation of the air pressure inside the tire is considered. Vertical load, lateral load and camber angle are applied to the simulation model. The tire rotates because of the friction contact with a drum, and reaches its maximum speed of 60 km/h. The dynamics stress results of the simulation and experiment are compared, and the reliability of the simulation model is verified.

Finite Element Stress Analysis according to Apical-coronal Implant Position

  • Kang, Tae-Ho;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권1호
    • /
    • pp.52-59
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the influence of apical-coronal implant position on the stress distribution after occlusal and oblique loading. Materials and Methods: The cortical and cancellous bone was assumed to be isotropic, homogeneous, and linearly elastic. The implant was apposed to cortical bone in the crestal region and to cancellous bone for the remainder of the implant-bone interface. The cancellous core was surrounded by 2-mm-thick cortical bone. An axial load of 200 N was assumed and a 200-N oblique load was applied at a buccal inclination of 30 degrees to the center of the pontic and buccal cusps. The 3-D geometry modeled in Iron CAD was interfaced with ANSYS. Results: When only the stress in the bone was compared, the minimal principal stress at load Points A and B, with a axial load applied at 90 degrees or an oblique load applied at 30 degrees, for model 5. The von Mises stress in the screw of model 5 was minimal at Points A and B, for 90- and 30-degree loads. When the von Mises stress of the abutment screw was compared at Points A and B, and a 30-degree oblique load, the maximum principal stress was seen with model 2, while the minimum principal stress was with model 5. In the case of implant, the model that received maximum von Mises stress was model 1 with the load Point A and Point B, axial load applied in 90-degree, and oblique load applied in 30-degree. Discussion and Conclusions: These results suggests that implantation should be done at the supracrestal level only when necessary, since it results in higher stress than when implantation is done at or below the alveolar bone level. Within the limited this study, we recommend the use of supracrestal apical-coronal positioning in the case of clinical indications.