• Title/Summary/Keyword: Maximum audible frequency

Search Result 15, Processing Time 0.025 seconds

The Thronging of Shoals of Squid to Audible underwater Sound (가청 수중음에 대한 오징어 어군의 위집)

  • 서두옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.220-227
    • /
    • 1995
  • An underwater speaker was designed and used as sound source for thronging shoal of squid in squid angling gear operation. The frequency characteristics of the designed speaker was analyzed experimentally and the thronging response of shoals of squid which may be a key parameter for a new sound catching method, was characterized in audible frequency. The field experiment was carried out in the coast of Cheju Island. The results of this study are summarized as follows; 1. Amplitude response of the speaker shows a maximum in their the frequency of 500Hz. 2. The output waveform distortion is not measured in the frequency range of 250~600Hz. 3. A underwater noise of shoals of squid which were thronged by fish lamp in night appeared the center frequency of 300~400Hz. 4. The shoals of squid shows a thronging response, when a manufactured underwater speaker transmits a intermittent audible sound of 300~400Hz in 10m depth of water.

  • PDF

A Study on the healing factors of Forest Sound

  • Yi, Eun-Young;Bae, Myung-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.70-77
    • /
    • 2017
  • Where there are all the flowers, the songs of all kinds of insects and birds are put in, the sunshine and shadows flicker The forest through which the water sound flows is an optimum resting space. All living creatures in these spaces will awaken the five senses of humans and perhaps turn the sensibility index (EQ). The forest meditation in the forest, which can be an optimal shelter for the people who need it, needs to feel the reverence of nature, to refine emotions, to be a self-reflection, to have a mind to respect, Have an important meaning. In this paper, we tried to consider the cause of the influence of forest sounds on human hearing from the acoustical aspect. The type of sound source of forest was divided into four seasons of spring, summer, autumn, winter. And the change in the duration of the sound during the four seasons, so that the general characteristics of the sounds of the four seasons are as follows: It can be seen that the change in the ratio of sub-band energy is almost equal to the change in dB in frequency of the equal-light curve. To compare this phenomenon, the criterion for changing the sound duration of each forest is natural The main forms of the luminance curve, such as the change in the duration of the white signal in the sound, are determined by the minimum, maximum audible frequency and the most sensitive frequency band, and the auditory characteristics of the other three inflection points Determines the overall shape of the equal-light curve.

Characteristics of Echolocation Calls of the Parti-coloured Bat, Vespertilio sinensis, in Relation to Environment Type (환경특성에 따른 안주애기박쥐(Vespertilio sinensis)의 반향정위 특징)

  • Chung, Chul-Un;Han, Sang-Hoon
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.353-358
    • /
    • 2015
  • In this study, we analyzed two types of echolocation calls used by the parti-coloured bat, Vespertilio sinensis. Bats were captured in the Naejangsan National Park in October 2013. Call sounds of hand-released bats were recorded at the location of capture within the National Park. We analyzed pulse duration (PD), pulse interval (PI), peak frequency (PF), maximum frequency ($F_{MAX}$), minimum frequency ($F_{MIN}$), and bandwidth (BW). V. sinensis emitted the different types of the echolocation calls depending on the surrounding environment. Frequency modulated-constant frequency (FM-CF) signal of audible range was emitted when they flew in the uncluttered space over the canopy. However, when flying in the cluttered space below the canopy, they only emitted FM signal. FM-CF signal is in the audible range (e.g., low frequency), and FM signal has a harmonic broadband frequency range of two. There were significant differences in PD, PI, PF, FMAX, FMIN, and BW between the calls emitted over and below the canopy. Considering the functional characteristics of FM and CF signals, we conclude that the foraging activity of V. sinensis was observed below the canopy, and recommend the use of FM signal and broadband as echolocation signals.

Flow Actuation by DC Surface Discharge Plasma Actuator in Different Discharge Modes

  • Kim, Yeon-Sung;Shin, Jichul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2015
  • Aerodynamic flow control phenomena were investigated with a low-current DC surface discharge plasma actuator. The plasma actuator was found to operate in three different discharge modes with similar discharge currents of about 1 mA or less. Stable continuous DC discharge without audible noise was obtained at higher ballast resistances and lower discharge currents. However, even with continuous DC power input, a low-frequency self-pulsed discharge was obtained at lower ballast resistances, and a high-frequency self-pulsed discharge was obtained at higher set-point currents and higher ballast resistances, both with audible noise. The Schlieren image reveals that the low-frequency self-pulsed mode produces a synthetic jet-like flow implying that a gas heating effect plays a role, even though the discharge current is small. The high-frequency self-pulsed mode produces pulsed jets in a tangent direction, and the continuous DC mode produces a steady straight pressure wave. Particle image velocimetry (PIV) images reveal that the induced flow field by the low-frequency self-pulsed mode has flow propagating in the radial direction and centered between the electrodes. The high-frequency self-pulsed mode and continuous DC mode produce flow from the anode to the cathode. The perturbed region downstream of the cathode is larger in the high-frequency self-pulsed mode with similar maximum speeds.

Auditory Characteristics of Tiger shark Scyliorhinus torazame caught in the Coast of jeju Island (제주 연안에서 어획된 두툽상어의 청각 특성)

  • Ahn, Jang-Young;Choi, Chan-Moon;Lee, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.234-240
    • /
    • 2011
  • In order to obtain the fundamental data about the behavior of sharks by underwater audible sound, this experiment was carried out to investigate the auditory characteristics of tiger shark Scyliorhinus torazame which was caught in the coast of Jeju Island by heart rate conditioning method using pure tones coupled with a delayed electric shock. The audible range of tiger shark extended from 80Hz to 300Hz with a peak sensitivity at 80Hz including less sensitivity at 300Hz. The mean auditory thresholds of tiger shark at the frequencies of 80Hz, 100Hz, 200Hz and 300Hz were 90dB, 103dB, 94dB and 115dB, respectively. The positive response of tiger shark was not evident after the sound projection of over 300Hz. At the results, the sensitive frequency range of tiger shark is narrower than that of fish that has swim bladder. In addition, it is assumed that the most sensitive frequency in auditory thresholds of Chondrichthyes is lower than that of Osteichthyes. Critical ratios of tiger shark measured in the presence of masking noise in the spectrum level range of about 60-70dB (0dB re $1{\mu}Pa/\sqrt{Hz}$) increased from minimum 27dB to maximum 39dB at test frequencies of 80-200Hz. The noise spectrum level at the start of masking was distributed at the range of about 65dB within 80-200Hz.

Hearing Ability of Conger eel Conger myriaster caught in the Coast of jeju Island (제주 연안에서 어획된 붕장어의 청각 능력)

  • Ahn, Jang-Young;Park, Yong-Seok;Choi, Chan-Moon;Kim, Seok-Jong;Lee, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.479-486
    • /
    • 2012
  • In order to obtain the fundamental data about the behavior of conger by underwater audible sound, this experiment was carried out to investigate the hearing ability of Conger eel Conger myriaster which was in the coast of Jeju Island by heartbeat conditioning method using pure tones coupled with a delayed electric shock. The audible range of conger eel extended from 50Hz to 300Hz with a peak sensitivity at 80Hz including less sensitivity over 200Hz. The mean auditory thresholds of conger eel at the frequencies of 50Hz, 80Hz, 100Hz, 200Hz and 300Hz were 105dB, 92dB, 96dB, 128dB and 140dB, respectively. The positive response of conger eel was not evident after the sound projection of over 200Hz. At the results, the sensitive frequency range of conger eel is narrow in spite of swim bladder. Auditory masking was determined for Conger eel by using masking stimuli with the spectrum level range of about 60~70dB (0dB re $1{\mu}Pa/\sqrt{Hz}$). According to white noise level, the auditory thresholds increased as compared with thresholds in a quiet background noise including critical ratio at 68dB of white noise from minimum 26dB to maximum 30dB at test frequencies of 80Hz and 100Hz. The noise spectrum level at the start of masking was distributed at the range of about 68dB within 80~100Hz.

The Study on the Characteristic Sound Intensity and Frequency of Noise Exposure at Occupational Sites (산업장 소음의 강도 및 주파수 특성에 관한 조사연구)

  • Kim, Kwang Jong;Cha, Chul Whan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.181-191
    • /
    • 1991
  • The present study determined the overall noise level and the distribution of sound pressure level over audible frequency range of noise produced at various work sites. Work-related noise greater than 80dBA produced from 98 separate work sites at 37 manufacturing companies and machine shops were analysed for the overall sound level (dBA) and frequency distribution. In addition, to determine the possible hearing loss related to work site noise, a hearing test was also conducted on 1,374 workers in these work sites. The results of the study were as follows ; 1. Of the total 98 work sites, 57 work sites(58.2%) produced noise exceeding threshold limit value (${\geq}90dBA$) set by the Ministry 01 Labor. In terms of different manufacturing industries the proportion of work sites which exceeded 90dBA was the highest for the cut-stone products industry with 6/6 work sites and lowest for the commercial printing industry with 1/13 work sites. 2. The percentage of workers who were exposed to noise greater than 90dBA was 19.8% (1,040 workers) 01 the total 5,261 workers. In terms of different industries, cut-stone products industry had the most workers exposed to noise exceeding 90dBA with 82.8%, textile bleaching and dyeing industry was next at 30.6% followed by fabricated metal products industry with 27.9%, plastic products manufacturing industry had the lowest percentage of workers exposed to 90dBA exceeding noise with 4.5%. 3. There was a statistically significant correlation between the frequency of noise-induced hearing loss and the percentage of workers exposed to noise exceeding 90dBA (P<0.05). 4. The frequency analysis of noise produced at the 98 work sites revealed that 44 work sites (44.9%) had the maximum sound pressure level at high-frequencies greater than 2KHz. In addition, significantly higher sound pressure level was detected at the high-frequencies at 90dBA exceeding work sites as compared to below 90dBA work sites (P<0.01). 5. The differences in sound level meter's A-and C-weighted sound pressure levels were analysed by frequencies. Of the 28 work sites which showed 0-1 dB difference in the two weighted sound levels, 20 work sites (71.4%) had significantly higher sound pressure levels at high-frequencies greater than 2KHz (P<0.01). Furthermore, there was a tendency for higher sound pressure levels to occur in the high-frequency range as the differences in the two weighted sound levels decreased.

  • PDF

A Study on the Development of SSB Modem (디지털 SSB 모뎀 개발에 관한 연구)

  • Jin, Heung-Du;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.693-697
    • /
    • 2007
  • The SSB modem performs the modulation process which converts the digital voltage level to the audible frequency band signal and the demodulation process which converts reversely the audible frequency signal to the digital voltage level. The modulator and the demodulator are implemented with a single DSP chip. Because of the SSB specific character, the distortion occurs when the frequency is changed. This distortion has no effect on voice communication, but it has an significant effect on data communication. In other words, it is impossible to send data stream with adjacent 2 periods. Therefore, in case of using 2-tone FSK, it is needed to send at least 3 periods to transmit 1 bit. Therefore we implemented the modem using modified phase-delay shift keying to transmit 1 tone signal for high speed transmission. In the 1200[bps] mode, it generates 0, $187{\mu}s$ delay time at 1.3kHz symbol frequency, and in the 2400[bps] mode, 0, $70{\mu}s$, $130{\mu}s$, $200{\mu}s$ delay time at 1.5kHz symbol frequency. Finally, in the maximum 3600[bps] mode, it generates 0, $100{\mu}s$, $160{\mu}s$, $250{\mu}s$ delay time at 2.0kHz symbol frequency. The measured results of the implemented SSB modem shows a good transfer functional characteristic by spectrum analyzer, almost same bandwidth in pass band and 20dB higher SNR comparing the German PACTOR and American CLOVER and in the experimental transmitting test, we verified the transmitted data is received correctly in platform.

  • PDF

A Study on the Development of SSB Modem (디지털 SSB 모뎀 개발에 관한 연구)

  • Kim, Jeong-Nyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1852-1857
    • /
    • 2007
  • The SSB modem performs the modulation process which converts the digital voltage level to the audible frequency band signal and the demodulation process which converts reversely the audible frequency signal to the digital voltage level. The modulator and the demodulator are implemented with a single DSP chip. Because of the SSB specific character, the distortion occurs when the frequency is changed. This distortion has no effect on voice communication but it has an significant effect on data communication. In other words, it is impossible to send data stream with adjacent 2 periods. Therefore, in case of using 2-tone FSK, it is needed to send at least 3 periods to transmit 1 bit. Therefore we implemented the modem using modified phase-delay shift keying to transmit 1 tone signal for high speed transmission. In the 1200[bps] mode, it generates 0, $187{\mu}s$, delay time at 1.3kHz symbol frequency, and in the 2400[bps] mode, 0, $70{\mu}s\;130{\mu}s\;200{\mu}s$, delay time at 1.5kHz symbol frequency. Finally, in the maximum 3600[bps] mode, it generates 0, $100{\mu}s\;160{\mu}s\;250{\mu}s$ 2.0kHz symbol frequency. The measured results of the implemented SSB modem shows a good transfer functional characteristic by spectrum analyzer, almost same bandwidth in pass band and 20dB higher SNR comparing the emu FACTOR and American CLOVER and in the experimental transmitting test, we verified the transmitted data is received correctly in platform.

A PVDF Acoustic Sensor for Identifying Sound Source Frequencies (음원주파수 판별을 위한 PVDF 음향센서)

  • 이용국;최용일;송유리;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.202-204
    • /
    • 1995
  • An acoustic sensor using PVDF film is proposed in this paper. And its properties, such as sensitivity level, identification of sound source frequencies. and directivity, were experimented. Sensitivity level measured at the distance of 1[m] was limited in the range of ${\pm}$10dB. Adjacent three frequencies were also tested to identify the frequency of sound sources. In the range of audible frequencies, it could distinguish the frequencies of a complex sound. In addition, it was found that the sensor outputs were maximum in the coincided direction with a source, when directivity was experimented with three sound sources and FFT. The proposed PVDF film sensor has good characteristics of directivity and identifying ability as an acoustic sensor.

  • PDF