• Title/Summary/Keyword: Maximum and minimum pressure

Search Result 335, Processing Time 0.021 seconds

Occurrence of Sand Liquefaction on Static and Cyclic Loading (정적 및 동적 하중에서 모래의 액상화 발생)

  • 양재혁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.235-244
    • /
    • 2001
  • Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

  • PDF

Micro-EHL Analysis of a Ball Joint Contact with Surface Roughness (표면 거칠기를 고려한 볼 조인트 접촉의 미세 탄성유체윤활 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.123-132
    • /
    • 2003
  • The effect of surface texture on elastohydrodynamic lubrication (EHL) point contact of a ball Joint mechanism in small reciprocating compressors is studied numerically by using multigrid method. Pressure and film thickness profiles have been calculated for surface roughness with waviness of different orientations and transverse ridge and dent at minimum and maximum Hoes M parameter conditions. The influence of the amplitude and the wavelength of the surface roughness was also studied. Results show that the oblique waviness with orientation angle of 30$^{\circ}$generates the smallest minimum film thickness as compared with those of longitudinal, transverse, and other oblique roughness. The influence of transverse waviness on the minimum film thickness is smaller than for the longitudinal waviness case.

A Study on the Characteristics of Peak Wind Pressure Coefficient according to Type of Pilotis of High-rise Buildings (고층건물의 필로티 형태별 피크풍압계수 특성에 대한 연구)

  • Kim, Geun-Ho;You, Jang-Youl;Kim, Young-Moon;You, Ki-Pyo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.51-58
    • /
    • 2018
  • Various types of pilotis frames are used on the ground level of high-rise buildings. In some cases, their interior finishing is destroyed by strong winds or typhoons. In the case of a corner pilotis, the peak wind pressure coefficients were greater on the ceiling than they were on the wall for all wind angles. Specifically, on the ceiling portion of a pilotis, the coefficient increased gradually from the outside to the inside in a symmetrical form that centered on the corner edge. However, the minimum peak wind pressure coefficient was greater at the center of the ceiling than it was on the edge of the pilotis' interior. Additionally, the higher the height of the pilotis, the greater the peak wind pressure coefficient was due to the turbulent flow that occurs within a pilotis. In this study, we evaluated peak wind pressures to design an interior finishing for the end edge of a pilotis and for corner piloti. In terms of specific wind angles, the maximum and minimum peak wind pressure coefficients were each observed. They were a maximum of $320^{\circ}$ and a minimum of $270^{\circ}$ for corner piloti and $0^{\circ}$ and $270^{\circ}$, respectively, for the end edge piloti.

A Study on the Explosion Characteristics of City Gas (도시가스의 폭발 특성에 관한 연구)

  • 최재욱;목연수;박승호
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.109-114
    • /
    • 2001
  • Explosive characteristics of the city gas were determined by using the gas explosion apparatues. The explosive range is determined between lower explosive limit of 5.0% and upper explosive limit of 15.3% at atmosphere and even though the oxygen concentration is decreased, lower explosive limit is not changed, but upper explosive limit is rapidly decreased. The minimum oxygen for combustion is determined 10%. The maximum explosion pressure is determined 5.72$\textrm{cm}^2$ and the maximum rate of explosion pressure rise is oxygen concentration of 12% to determined 160.12$\textrm{cm}^2{\cdot}$sec.

  • PDF

Analysis of Peak Wind Pressure Coefficients of Penetration Type and End Type Pilotis (관통형과 단부형 필로티 천장부의 피크풍압계수 특성 분석)

  • You, Jang-Youl;Kim, Geun-Ho;Chae, Myung-Jin;Kim, Young-Moon;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • Various pilotis are installed in the lower part of high rise buildings. Strong winds can generate sudden airflow around the pilotis, which can cause unexpected internal airflow changes and may cause damage to the exterior of the piloti ceiling. The present study investigates the characteristics of peak wind pressure coefficient for the design of piloti ceiling exteriors by conducting wind pressure tests on high rise buildings equipped with penetration-type and end-type pilotis in urban and suburban areas. The minimum peak wind pressure coefficient for penetration-type piloti ceilings ranges from -2.0 to -3.3. Minimum peak wind pressure coefficient in urban areas was 30% larger than in suburban areas. In end-type piloti ceilings, maximum peak wind-pressure coefficient ranges from 0.5 to 1.9, and minimum peak wind-pressure coefficient ranges from -1.3 to -3.6. With changes in building height, peak wind pressure coefficient decreases as the aspect ratio increases. Peak wind-pressure coefficient increases with taller pilotis. On the other hand, when piloti height decreases, the absolute value of the minimum peak wind pressure coefficient increases.

The Explosion Characteristics of City Gas on the Change of Oxygen Concentration and Pressure (산소농도와 압력 변화에 따른 도시가스의 폭발특성)

  • Choi Jae-Wook;Lee In-Sik;Park Sung-tae
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.38-43
    • /
    • 2005
  • To examine the characteristics of the explosion of city gas, the concentration of oxygen was changed with the change of initial pressure. From the result of the experiment, as the concentration of oxygen was low, the explosion limit became narrow and the minimum concentration of oxygen for the explosion was $12\%$. Furthermore, As the increase of the initial pressure, explosion ranges were a little increased. And as the change of the initial pressure, the maximum explosion pressure were $6.3 kgf/cm^2{\cdot}g,\;12.7 kgf/cm^2{\cdot}g$ and the maximum pressure rising velocity were $245.63 kgf/cm^2/s,\;427.88 kgf/cm^2/s$.

  • PDF

A Study of Characteristics such as Spontaneous Ignition, Flash Point and Explosion Behavior of Methyl Ethyl Ketone Peroxide in ender to Determine its Hazardousness (Methyl Ethyl Ketone Peroxide의 위험성을 판단하기 위한 자연발화, 인화점 및 폭발거동에 관한 기초 연구)

  • Jung, Doo-Kyun;Choi, Jae-Wook;Lee, In-Sik;Lim, Woo-Sub;Kim, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.78-83
    • /
    • 2005
  • In this study, the evaluate characteristics of fire and explosion of MEK-PO are subjected to spontaneous ignition, flash point and explosion hazard. The minimum ignition temperature and instantaneous ignition temperature for MEK-PO were $188.5^{\circ}C\;and\;230^{\circ}C\;at\;225{\mu}L$. In addition The flash point for MEK-PO was obtained at $49^{\circ}C$. Furthermore, the maximum explosion pressure and the maximum explosion pressure rising velocity: using MCPVT (mini cup pressure vessel tester) were $10.82kgf/cm^2\;and\;33.72kgf/cm^2{\cdot}s$.

A Study on Improvement of Efficiency of Suction Muffler for Compressor (압축기용 흡입머플러의 성능개선에 관한 연구)

  • Jeong, Gyeong-Hun;Jung, Kyung-Hun;Lee, Eun-Young;Kim, Woo-Young;Lee, You-Yub;Hwang, Won-Gul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.220-227
    • /
    • 2002
  • The design of suction muffler for compressor aims to achieve a maximum noise reduction and a minimum pressure loss. Until now, the design process has been performed experimentally rather than theoretically. In this paper, to achieve the maximum noise reduction and minimum pressure loss. we studied the effect of the shape and volume of the expansion tube of the muffler on TL and pressure drop. We made an extensive use of computer program such as SYSNOISE. FLUENT, and STAR-CD to calculate the TL and pressure distribution of suction muffler. The design of the muffler is optimized with respect to flow loss and TL. Experiments are performed to check the result of design change, which proves satisfactory results. It is expected that this process can reduce time to design a muffler in the fields.

Optimal Design and Analysis of a Class IV Flextensional Transducer (Class Flextensional 트랜스듀서의 최적설계 및 특성해석)

  • 강국진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.69-76
    • /
    • 2000
  • In this research, with the FEM we analyzed the variation of the sound pressure and thermal distribution of a Class IV Flextensional transducer in relation to its material properties and structures. Based on the results, we determined optimal structure of a Class IV Flextensional transducer that had maximum sound pressure, minimum thermal distribution, and 1 kHz resonance frequency. The sound pressure by the optimal structure is higher than that of the basic structure by two times, and the thermal distribution is much lower. Results of the present work can be utilized to design Class IV Flextensional transducers of various resonance frequency, maximum sound pressure, and minimum thermal distribution.

  • PDF

The Effects of Alternating Set Pressure Changes on Dynamic Tissue Perfusion Characteristics (교대부양 설정압력 변화가 인체조직의 동적인 관류특성에 미치는 영향)

  • Won, Byeong-Hee;Song, Chang-Seop
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.875-887
    • /
    • 2010
  • The quantitative effectiveness of powered support surfaces such as APAM in preventing and treating pressure ulcers has not been sufficiently evaluated because of uncertainty of alternating pressure load input and lack of interpretation of dynamic perfusion characteristics of soft tissue. The aim was to verify the dynamic loading effects to sacral tissue perfusion characteristics from alternating set pressure changes. We developed integrated experiment system to supply alternating load to supinely positioned sacrum and concurrently measured $TcPO_2$, $TcPCO_2$ and air cell pressure. Ten aged subjects (5 female, 5 male) were tested with alternating set pressure 20, 30, 40, 50 and 60mmHg. From the dynamic perfusion response eight characteristic parameters were proposed such as average, minimum, maximum and perfusion range regarding to $TcPO_2$ and $TcPCO_2$. A one-way ANOVA was carried out to determine whether the manipulation of alternating set pressure had any effect on $TcPO_2$ and $TcPCO_2$. From the dynamic tissue perfusion response we found mean $TcPO_2$ decreased exponentially as alternating pressure load increased and perfusion range varied mainly because of minimum level change of $TcPO_2$. And perfusion range of $TcPCO_2$ affected by increase of maximum value of $TcPCO_2$. From the results we can get more strict insights about actual physiological dynamic tissue perfusion mechanism under alternating pressure load.