• Title/Summary/Keyword: Maximum amplitude

Search Result 762, Processing Time 0.032 seconds

Effects of Load Center of Gravity and Feet Positions on Peak EMG Amplitude at Low Back Muscles While Lifting Heavy Materials (중량물 들기 작업시 물체 무게중심 및 발의 위치가 허리 근육의 최대 EMG 진폭에 미치는 영향)

  • Kim, Sun-Uk;Han, Seung Jo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Objectives: This study's aims were to evaluate the effects of load center of gravity within an object lifted and feet placements on peak EMG amplitude acting on bilateral low back muscle groups, and to suggest adequate foot strategies with an aim to reducing low back pain incidence while lifting asymmetric load. Methods: The hypotheses that asymmetric load imposes more peak EMG amplitude on low back muscles contralateral to load center of gravity than symmetric load and maximum peak EMG amplitude out of bilateral ones can be relieved by locating one foot close to load center of gravity in front of the other were established based on biomechanics including safety margin model and previous researches. 11 male subjects were required to lift symmetrically a 15.8kg object during 2sec according to each conditions; symmetric load-parallel feet (SP), asymmetric load-parallel feet (AP), asymmetric load-one foot contralateral to load center of gravity in front of the other (AL), and asymmetric load-one foot ipsilateral to load center of gravity in front of the other (AR). Bilateral longissimus, iliocostalis, and multifidus on right and left low back area were selected as target muscles, and asymmetric load had load center of gravity 10cm deviated to the right from the center in the frontal plane. Results: Greater peak EMG amplitude in left muscle group than in right one was observed due to the effect of load center of gravity, and mean peak EMG amplitudes on both sides was not affected by load center of gravity because of EMG balancing effect. However, the difference of peak EMG amplitudes between both sides was significantly affected by it. Maximum peak EMG amplitude out of both sides and the difference of peak EMG amplitude between both sides could be reduced with keeping one foot ipsilateral to load center of gravity in front of the other while lifting asymmetric load. Conclusions: It was likely that asymmetric load lead to the elevated incidence of low back pain in comparison with symmetric load based on maximum peak EMG amplitude occurrence and greater imbalanced peak EMG amplitude between both sides. Changing feet positions according to the location of load center of gravity was suggested as one intervention able to reduce the low back pain incidence.

Quantitative Analysis of EMG Amplitude Estimator for Surface EMG Signal Recorded during Isometric Constant Voluntary Contraction (등척성 일정 자의 수축 시에 기록한 표면근전도 신호에 대한 근전도 진폭 추정기의 정량적 분석)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.843-850
    • /
    • 2017
  • The EMG amplitude estimator, which has been investigated as an indicator of muscle force, is utilized as the control input to artificial prosthetic limbs. This paper describes an application of the optimal EMG amplitude estimator to the surface EMG signals recorded during constant isometric %MVC (maximum voluntary contraction) for 30 seconds and reports on assessing performance of the amplitude estimator from the application. Surface EMG signals, a total of 198 signals, were recorded from biceps brachii muscle over the range of 20-80%MVC isometric contraction. To examine the estimator performance, a SNR(signal-to-noise ratio) was computed from each amplitude estimate. The results of the study indicate that ARV(average rectified value) and RMS(root mean square) amplitude estimation with forth order whitening filter and 250[ms] moving average window length are optimal and showed the mean SNR improvement of about 50%, 40% and 20% for each 20%MVC, 50%MVC and 80%MVC surface EMG signals, respectively.

Characteristics of Acoustic Emission by Expansive Cement Induced Rock Fractures (팽창성 시멘트에 의한 암석균열시의 AE 특성)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 1998
  • A study was conducted to determine the characteristics of acoustic emission(AE) events generated by the expansive cement induced rock fracturing. The dominant frequency and the maximum amplitude of the AE events are changed in relation to the rate of expansive pressure development in the hole. The dominant frequencies are in the range of 150∼230kHz for the small hole tests and 400∼500kHz for the large hole test. The maximum amplitudes are in the range of 0.015∼0.050cm/sec and 0.025∼0.064cm/sec, respectively. The fact that AE events of higher amplitude with higher frequency on the large hole test and lower amplitude with lower frequency on the small hole tests were detected, may strongly imply that the amount of energy consumed for a macro-crack in both tests may be similar. The expansive cement induced crack propagates stably without any distinguished event having higher amplitude and this implies that a macro-crack is a result of stable growth of micro cracks.

  • PDF

ON ANALYTICAL SOLUTION OF NON LINEAR ROLL EQUATION OF SHIPS

  • Tata S. Rao;Shoji Kuniaki;Mita Shigeo;Minami Kiyokazu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.134-143
    • /
    • 2006
  • Out of all types of motions the critical motions leading to capsize is roll. The dynamic amplification in case of roll motion may be large for ships as roll natural frequency generally falls within the frequency range of wave energy spectrum typical used for estimation of motion spectrum. Roll motion is highly non-linear in nature. Den are various representations of non-linear damping and restoring available in literature. In this paper an uncoupled non-linear roll equations with three representation of damping and cubic restoring term is solved using a perturbation technique. Damping moment representations are linear plus quadratic velocity damping, angle dependant damping and linear plus cubic velocity dependant damping. Numerical value of linear damping coefficient is almost same for all types but non-linear damping is different. Linear and non-linear damping coefficients are obtained form free roll decay tests. External rolling moment is assumed as deterministic with sinusoidal form. Maximum roll amplitude of non-linear roll equation with various representations of damping is calculated using analytical procedure and compared with experimental results, which are obtained form forced tests in regular waves by varying frequency with three wave heights. Experiments indicate influence of non-linearity at resonance frequency. Both experiment and analytical results indicates increase in maximum roll amplitude with wave slope at resonance. Analytical results are compared with experiment results which indicate maximum roll amplitude analytically obtained with angle dependent and cubic velocity damping are equal and difference from experiments with these damping are less compared to non-linear equation with quadratic velocity damping.

  • PDF

A Parametric Study and an Optimal Design of an ER-SFD Supporting a Rigid Rotor System (강성 회전축계를 지지한 ER-SFD의 parametric study 및 최적설계)

  • 김종립;이남수;이용복;김창호;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.279-284
    • /
    • 1999
  • This paper presents a parametric study and an optimal design of the ER-SFD supporting a rigid rotor system. An attempt is made to obtain the optimal design of an ER-SFD for a two degree-of-freedom rotor model. Such a simple model is used in order to get a better insight into the physics of the problem, A maximum whirl amplitude, supply pressure and voltage are considered, and a maximum whirl amplitude is minimized over a range of speeds and presented for some values of unbalance mass. The results presented in this paper provide important design information necessary to reduce a whirl amplitude of an ER-SFD.

  • PDF

An Optimal Design of an ER-SFD Supporting a Rigid Rotor System (강성 회전축계를 지지한 전기 유변 유체 스퀴즈 필름 댐퍼의 최적설계)

  • 이용복;김종립;이남수;김창호;최동훈
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.216-220
    • /
    • 2001
  • This paper presents a parametric study and an optimal design of the ER-SFD supporting a rigid rotor system. An attempt is made to obtain the optimal design of an ER-SFD for a two degree-of-freedom rotor model. Such a simple model is used in order to get a better insight into the physics of the problem. A maximum whirl amplitude, supply pressure and voltage are considered, and a maximum whirl amplitude is minimized over a range of speeds and presented f3r some values of unbalance mass. The results presented in this paper provide important design information necessary to reduce a whirl amplitude of an ER-SFD.

Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

  • Sun, Yanguo;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.565-587
    • /
    • 2013
  • Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

Transition-limited pulse-amplitude modulation technique for high-speed wireline communication systems

  • Eunji Song;Seonghyun Park;Jaeduk Han
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.974-981
    • /
    • 2023
  • This paper presents a transition-limited pulse-amplitude modulation (TLPAM) signaling method to enable a high data rate and robust wireline communications. TLPAM signaling addresses the impact of high intersymbol interference (ISI) ratios in conventional M-ary PAM signaling methods by limiting the maximum voltage transition level between adjacent symbols. The implementation of a TLPAM signaling encoder is realized by setting back the most significant bits (MSBs) in the queue. The correlation between TLPAM's maximum transition level, effective data rate, and eye width/height is analyzed with various channel loss parameters, followed by characterization and measurement results with a realistic channel setup. The analysis and experimental results reveal the effectiveness of the proposed TLPAM signaling scheme for achieving a high data rate with minimal interference.

Critical heat flux (CHF) in pool boiling under static and rolling conditions

  • Tanjung, Elvira F.;Albdour, Samah A.;Jeong, Yeon Uk;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.520-529
    • /
    • 2020
  • Experimental investigations were attempted to simultaneously observe the vapor behaviors and critical heat flux under static and rolling conditions. From visualization results, vapor initiated, grew, and detached individually in a vertical direction from the static heated surfaces (at 10, 20, and 30°). While under rolling motion, initiated vapor grew, and interacted with each other, resulting in forming a wider dry spot on the heated surface. Also, it was observed that the vapor drifted upward and stayed on the heated surface longer compared to under static condition. The faster the platform rolls, the longer the vapor stay on the heated surface, significantly decreasing the CHF. On the other hand, as the platform rolls slower (at high rolling period), CHF increases. CHF was decreased with increasing maximum rolling amplitude and inclination angle under both conditions (static and rolling). CHF under rolling conditions was noticed to be lower than under static condition except at maximum rolling amplitude of 10°. The bubble departure frequency at a maximum rolling amplitude of 10° was the highest among all of rolling amplitudes, thereby enhancing the CHF. These results indicate that rolling motion significantly affects vapor behaviors and CHF.

A Study for Accommodation Power on the Basis of Near Power and Correction Power for distance (근용 도수와 원용 교정도수를 근거로 한 조절력에 관한 연구)

  • Lee, Jeung-Young;Park, Eun-Kyu;Seo, Jeung-Ik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.107-110
    • /
    • 2007
  • Analysis of accommodation amplitude has been conducted for 137 adults, living in rural area, aged from their fifties to eighties. The methods included measurement of correction power for distance via auto-refractometer, measurement of near power based on trial frame and trial lens set, and calculation of effective accommodation amplitude using 1/2 and 2/3 of the maximum accommodation amplitude. The research results for participants aged in their fifties, sixties, seventies, and eighties showed 1.84~2.46D, 1.55~2.06D, 1.43~1.90D, and 1.22~1.62D respectively. It is relatively higher than the existing knowledge regarding accommodation amplitude associated with age.

  • PDF