• Title/Summary/Keyword: Maximum a Posteriori

Search Result 162, Processing Time 0.023 seconds

Statistical Model-Based Voice Activity Detection Using the Second-Order Conditional Maximum a Posteriori Criterion with Adapted Threshold (적응형 문턱값을 가지는 2차 조건 사후 최대 확률을 이용한 통계적 모델 기반의 음성 검출기)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.76-81
    • /
    • 2010
  • In this paper, we propose a novel approach to improve the performance of a statistical model-based voice activity detection (VAD) which is based on the second-order conditional maximum a posteriori (CMAP). In our approach, the VAD decision rule is expressed as the geometric mean of likelihood ratios (LRs) based on adapted threshold according to the speech presence probability conditioned on both the current observation and the speech activity decisions in the pervious two frames. Experimental results show that the proposed approach yields better results compared to the statistical model-based and the CMAP-based VAD using the LR test.

Maximum a posteriori CFAR for weibull clutter (Weibull clutter 에 대한 최대사후확률 일정오경보수신기)

  • Yu, Kung-T.;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.146-148
    • /
    • 1995
  • A CFAR algorithm for weibull clutter is discussed. The Maximum a posteriori(MAP) estimator for two parameters(skewness and scale) of the weibull clutter is proposed, assuming the probability density function of skewness parameter is known. And proposed MAP estimator is compared with the Maximum likelihood(ML) estimator. Using this MAP estimator, we can design CFAR detector which is shown to have smaller CFAR loss than ML CFAR detector by the statistical simulation method.

  • PDF

Design of A MAP Decoder with MAP(Maximum A Posteriori) Algorithm (MAP(Maximum A Posteriori)복호 알고리즘을 이용한 MAP Decoder의 설계)

  • Jung, Deuk-Soo;Song, Oh-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.1615-1618
    • /
    • 2002
  • 본 논문은 MAP(Maximum A Posteriori) 복호 알고리즘을 이용한 MAP Decoder의 설계에 관해 다룬다. 채널코딩기법은 채널을 통해서 디지털 정보를 전송할 때 신뢰성을 제공하기 위해서 사용되어 진다. 즉 수신단에서 수신된 정보의 오류를 검사하고 수정하기 위한 목적으로 송신단에서는 디지털 정보에 부가 정보를 첨가해서 전송하게 된다. 그래서 무선 이동 통신에서 성능이 우수한 채널코딩기법은 우수한 통신 품질을 위해서는 필수적이라고 할 수 있다. 최근에 Shannon의 한계에 매우 근접한 성능으로 많이 알려진 오류정정부호로 터보코드가 발표되었고 많은 연구가 진행되고 있다. 터보코드의 부호기로는 RSC(recursive systematic convolutional)코드가 사용되며 디코딩 알고리즘으로는 주로 MAP 복호 알고리즘을 사용한다. 본 논문에서 제안된 MAP 복호기는 하드웨어로 구현하기 위해서 변형된 LOG-MAP 복호 알고리즘을 이용하였고 터보디코더의 반복 복호에 이용할 수 있다.

  • PDF

Probabilistic Bilinear Transformation Space-Based Joint Maximum A Posteriori Adaptation

  • Song, Hwa Jeon;Lee, Yunkeun;Kim, Hyung Soon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.783-786
    • /
    • 2012
  • This letter proposes a more advanced joint maximum a posteriori (MAP) adaptation using a prior model based on a probabilistic scheme utilizing the bilinear transformation (BIT) concept. The proposed method not only has scalable parameters but is also based on a single prior distribution without the heuristic parameters of the previous joint BIT-MAP method. Experiment results, irrespective of the amount of adaptation data, show that the proposed method leads to a consistent improvement over the previous method.

Maximum Product Detection Algorithm for Group Testing Frameworks

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • In this paper, we consider a group testing (GT) framework which is to find a set of defective samples out of a large number of samples. To handle this framework, we propose a maximum product detection algorithm (MPDA) which is based on maximum a posteriori probability (MAP). The key idea of this algorithm exploits iterative detection to propagate belief to neighbor samples by exchanging marginal probabilities between samples and output results. The belief propagation algorithm as a conventional approach has been used to detect defective samples, but it has computational complexity to obtain the marginal probability in the output nodes which combine other marginal probabilities from the sample nodes. We show that the our proposed MPDA provides a benefit to reduce computational complexity up to 12% in runtime, while its performance is only slightly degraded compared to the belief propagation algorithm. And we verify the simulations to compare the difference of performance.

Subsidiary Maximum Likelihood Iterative Decoding Based on Extrinsic Information

  • Yang, Fengfan;Le-Ngoc, Tho
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This paper proposes a multimodal generalized Gaussian distribution (MGGD) to effectively model the varying statistical properties of the extrinsic information. A subsidiary maximum likelihood decoding (MLD) algorithm is subsequently developed to dynamically select the most suitable MGGD parameters to be used in the component maximum a posteriori (MAP) decoders at each decoding iteration to derive the more reliable metrics performance enhancement. Simulation results show that, for a wide range of block lengths, the proposed approach can enhance the overall turbo decoding performance for both parallel and serially concatenated codes in additive white Gaussian noise (AWGN), Rician, and Rayleigh fading channels.

Self-Adaptation Algorithm Based on Maximum A Posteriori Eigenvoice for Korean Connected Digit Recognition (한국어 연결 숫자음 인식을 일한 최대 사후 Eigenvoice에 근거한 자기적응 기법)

  • Kim Dong Kook;Jeon Hyung Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.590-596
    • /
    • 2004
  • This paper Presents a new self-adaptation algorithm based on maximum a posteriori (MAP) eigenvoice for Korean connected digit recognition. The proposed MAP eigenvoice is developed by introducing a probability density model for the eigenvoice coefficients. The Proposed approach provides a unified framework that incorporates the Prior model into the conventional eigenvoice estimation. In self-adaptation system we use only one adaptation utterance that will be recognized, we use MAP eigenvoice that is most robust adaptation. In series of self-adaptation experiments on the Korean connected digit recognition task. we demonstrate that the performance of the proposed approach is better than that of the conventional eigenvoice algorithm for a small amount of adaptation data.

Maximum a posteriori estimation based wind fragility analysis with application to existing linear or hysteretic shear frames

  • Wang, Vincent Z.;Ginger, John D.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.653-664
    • /
    • 2014
  • Wind fragility analysis provides a quantitative instrument for delineating the safety performance of civil structures under hazardous wind loading conditions such as cyclones and tornados. It has attracted and would be expected to continue to attract intensive research spotlight particularly in the nowadays worldwide context of adapting to the changing climate. One of the challenges encumbering efficacious assessment of the safety performance of existing civil structures is the possible incompleteness of the structural appraisal data. Addressing the issue of the data missingness, the study presented in this paper forms a first attempt to investigate the feasibility of using the expectation-maximization (EM) algorithm and Bayesian techniques to predict the wind fragilities of existing civil structures. Numerical examples of typical linear or hysteretic shear frames are introduced with the wind loads derived from a widely used power spectral density function. Specifically, the application of the maximum a posteriori estimates of the distribution parameters for the story stiffness is examined, and a surrogate model is developed and applied to facilitate the nonlinear response computation when studying the fragilities of the hysteretic shear frame involved.

A Statistical Model-Based Voice Activity Detection Employing the Conditional MAP Criterion with Spectral Deviation (조건 사후 최대 확률과 음성 스펙트럼 변이 조건을 이용한 통계적 모델 기반의 음성 검출기)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.324-329
    • /
    • 2011
  • In this paper, we propose a novel approach to improve the performance of a statistical model-based voice activity detection (VAD) which is based on the conditional maximum a posteriori (CMAP) with deviation. In our approach, the VAD decision rule is expressed as the geometric mean of likelihood ratios (LRs) based on adapted threshold according to the speech presence probability conditioned on both the speech activity decisions and spectral deviation in the pervious frame. Experimental results show that the proposed approach yields better results compared to the CMAP-based VAD using the LR test.

The Mutual Information for Bit-Linear Linear-Dispersion Codes (BLLD 부호의 Mutual Information)

  • Jin, Xiang-Lan;Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.958-964
    • /
    • 2007
  • In this paper, we derive the relationship between the bit error probability (BEP) of maximum a posteriori (MAP) bit detection and the bit minimum mean square error (MMSE), that is, the BEP is greater than a quarter of the bit USE and less than a half of the bit MMSE. By using this result, the lower and upper bounds of the derivative of the mutual information are derived from the BEP and the lower and upper bounds are easily obtained in the multiple-input multiple-output (MIMO) communication systems with the bit-linear linear-dispersion (BLLD) codes in the Gaussian channel.