• Title/Summary/Keyword: Maximum Velocity

Search Result 2,109, Processing Time 0.031 seconds

The Characteristics of Circulation in the Coastal Area of Jeju Harbor Using the Three Dimensional Ocean Circulation Model (3차원 해수유동모델에 의한 제주항 연안해역의 해수순환 특성)

  • Yang, Tai-Hoek;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.679-686
    • /
    • 2011
  • The characteristics of circulation in the coastal area of Jeju Harbor in Korea was examined using the Princeton Ocean Model(POM) with a sigma coordinate system. The result of numerical analysis well corresponded to the observed current data. The velocity at offshore was stronger compared to coastal area during the both period of in maximum flood and maximum ebb of spring tide. According to mean wind velocity, the tidal velocity at the shallow area of Jocheon was slightly increasing during maximum ebb. The effect of wind on the circulation was stronger in shallow area and showed rapid change with depth.

A Study on Low-Velocity Impact Characterization of Sandwich Panels with Metal and Laminate Composite Facesheets (금속재와 적층복합재 면재를 갖는 샌드위치 패널의 저속충격 특성 연구)

  • Lee, Jae-Youl;Lee, Sang-Jin;Jo, Se-Hyun;Mok, Jai-Kyun;Shin, Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.144-150
    • /
    • 2007
  • In this paper, the low velocity response of four different sandwich panels with metal and laminate composite facesheets has been investigated by conducting drop-weight impact tests using an instrumented falling-weight impact tower. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

  • PDF

A Study on dynamic Fracturing Behavior of Anisotropic Granite by SHPB Test (스플릿 흡킨슨 바(SHPB)를 이용한 이방성 화강암의 동적파괴거동 연구)

  • Choi, Mi-Jin;Cho, Sang-Ho;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.214-218
    • /
    • 2008
  • Dynamic fracturing of anisotropic granite was investigated by SHPB (Split Hopkinson Pressure Bar). Energy absorption during the test and maximum stress were increased as strain rate increased. Maximum stresses in every direction were dependent on the strain rate but not so sensitive to anisotropy. Elastic wave velocity was decreased as strain rate increased and dependent on strain rate in every direction. Especially, elastic wave velocity decreased more rapidly in a strong rock.

Analysis of Wind Turbine system using Fluid Structure Diteraction (유동-구조 연성해석 기법을 이용한 풍력발전시스템 해석)

  • Kim, Yun-Gi;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

An Maximization of Ionic Wind Utilizing a Cylindrical Corona Electrode (관형 코로나 방전전극을 이용한 이온풍속의 최대화)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2256-2261
    • /
    • 2010
  • A corona discharge system with needle point or wire type corona electrode has been well used as an ionic wind blower. The corona discharge system with a needle point electrode produces ions at lower applied voltage effectively. However, the corona discharge on the needle point electrode transits to the arc discharge at lower voltage, and it is hard to obtain the elevated electric field in the discharge airgap for enhancing the ion migration velocity due to the weak Coulomb force. A cylindrical corona electrode with sharp round tip is reported as one of effective corona electrode, because of its higher breakdown voltage than that of the needle electrode. A basic study, for the effectiveness of cylindrical electrode shape on the ionic wind generation, has been investigated to obtain an maximum wind velocity, which however is the final goal for the real field application of this kind ionic wind blower. In this paper, a parametric study for maximizing the ionic wind velocity utilizing the cylindrical corona electrode and a maximum ion wind velocity of 4.1 m/s were obtained, which is about 1.8 times higher than that of 2.3m/s obtained with the needle corona electrode from the velocity profile.

Measurements of Velocity Distribution Function in Circular Open Channel Flows by Stereoscopic PIV (3차원 PIV에 의한 원형 개수로 유동의 속도분포 함수 측정)

  • Yoon, Ji-In;Sung, Jae-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • For the first time, the present study has measured the velocity distribution function in circular open channel flow in a three-dimensional shape using a stereoscopic PIV system. For a given channel slope, water depth was varied from 30% to 80% of the channel diameter. Then, the characteristics of the velocity distribution function was compared according to the change of the water depth. Unlike a rectangular channel, the present experiment exhibited quite different shapes in the velocity distribution function whether the water depth is higher than 50% or not. Especially, the position of maximum velocity in the central and side wall changes in a different manner for the water depth above 50%. By differentiating the velocity distribution function, local wall friction coefficient was evaluated as a function of wall position. If the water depth goes down, the difference between the maximum and minimum values in the local wall friction coefficient increases, and the averaged value a1so increases.

Velocity Field Measurement of Impinging Waves on a Structure (구조물에 작용하는 쇄파의 속도장 측정)

  • Choi, Sang-Hyun;Ryu, Yong-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.559-565
    • /
    • 2005
  • As the wave impinges on and overtops the structure, a large highly aerated region is created in front of the structure and water splashs on top of the structure. The broken wave in front of the structure and associated green water on top of the structure are highly aerated containing not only a large number of bubbles but also very large sizes of bubbles. In this paper, the velocity field of the highly aerated region and the splashing water on the top is measured using a modified PIV method incorporating the traditional PIV method with the shadowgraphy technigue by correlating the ' texture ' of the bubble images. The velocity fields of a plunging wave impacting on a structure in a two-dimensional wave flume is measured. It is found that the maximum fluid particle velocity in flout of the structure during the impinging process is about 1.5 times the phase speed of the wave, while the maximum horizontal velocity above the top is less than the phase speed, It is also found that the dam breaking solution does not work well in predicting the green water velocity.

The Effect of an 8-week Velocity-based Training on Mechanical Power of Elite Sprinters (8주간 속도 기반 트레이닝이 단거리 육상선수의 순발력에 미치는 영향)

  • Jae Ho Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.18-24
    • /
    • 2024
  • Objective: The purpose of this study was to evaluate the effects of an 8-week velocity-based training on the maximum vertical jump in elite sprinters. Method: Ten elite sprinters were participated in this study (age: 21 ± 0.97 yrs., height: 179 ± 3.54 cm, body mass: 72 ± 2.98 kg). An 8-week velocity-based power training was provided to all subjects for twice per week. Their maximum vertical jumps were measured before and after velocity-based training. A 3-dimensional motion analysis with 8 infrared cameras and 4 channels of EMG was performed in this study. A paired t-test was used for statistical verification. The significant level was set at α=.05. Results: There were no statistically significant differences were found between pre and post the training (p>.05). However, most variables included jump record, knee joint ROM, and muscle activation of rectus femoris showed increased pattern after the training. Conclusion: In this study, an 8-week velocity-based training did not showed the significant training effects. However, knee joint movement which is the key role of the vertical jump revealed positive kinematic and kinetic pattern after the training. From this founding, it is believed that velocity-based training seems positively affect the vertical jump which is the clear measurement of mechanical power of sprinter. In addition, to get more clear evidence of the training more training period would be needed.

Hydraulic and Upstream Migratory Experiments on Combined Fishway of Herring-bone Bottom Baffle Type and Brush Type (헤링본 조류판·브러시 겸용어도의 수리 및 어류 소상실험)

  • Lee, Hyeong Rae;Kim, Ki Heung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.3
    • /
    • pp.157-168
    • /
    • 2011
  • In order to promote efficiency of upstream and downstream migration of fishes, this study has developed a combined fishway of herring-bone bottom baffle type and brush type fishways. The results obtained are as follows : 1. In a channel with constant incline, the velocity of current generally shows a distinct tendency of acceleration as it goes down the stream. But in the hydraulic experiment of herring-bone bottom baffle type fishway, the velocity reached its maximum only at 0.4m/sec, and it tended to be stable without any acceleration. 2. The velocity in the brush type fishway showed a distinct tendency of acceleration as the discharge increased. But its greatest velocity was only 0.3m/sec, and its velocity change according to the discharge increase was only 0.15m/sec at maximum. 3. The maximum velocity in the combined type fishway was less than half of the blast speed of the poorest swimmer, the juvenile eel with 90mm of body length. So any species of fishes are supposed to be able to migrate upstream from the estuary through this combined type fishway. 4. The field experiment of upstream migration showed that the combined type fishway can promote efficiency of upstream and downstream migration of any species of fishes.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.