• 제목/요약/키워드: Maximum Shear Stress

검색결과 555건 처리시간 0.027초

평판(平板)에 붙은 Stiffener 속에서의 전단응력(剪斷應力)의 분포(分布) (The Maximum Shear Stress Distribution in a Stiffener attached to a Plate)

  • 임상전
    • 대한조선학회지
    • /
    • 제3권1호
    • /
    • pp.19-24
    • /
    • 1966
  • The maximum shear stress distribution in a stiffening flat attached to a plat undergoing a single tensile force has been investigated by photoelastic method. In the experiments a photoelastic model, as shown in Fig. 1, has been studied in the fields of a polariscope, as shown in Fig. 2. Fig. 3 shows the isoclinics and Fig. 4 and 5 are stress trajectories of the principal stresses and maximum shear stresses, respectively. Fig. 6 is the isochromatics in light field. The maximum shear stress at each point in the stiffener were determined from the isochromatics in both of light field of light field and dark field. Then the maximum shear stresses were divided by the average shear stress in the model, to obtain the ratio ${\tau}max/{\tau}av$ at each point. Finaly the variations of the ratio ${\tau}max/{\tau}av$ along the horizontal and vertical lines in the stiffener have been plotted, as shown in Fig. 7 and 8. The conclusions reached in this investigation are as follows: (1) The shear stresses transmitted to the stiffener through the juncture are concentrated on the end portions. (2) The maximum shear stress at the ends of the stiffener reaches to about 4 times of average shear stress. (3) The irregularities in the stress distribution are restricted in the end portions of the stiffener.

  • PDF

링 전단시험기를 이용한 연암의 절리에 대한 잔류강도 특성에 관한 연구 (A Study on Residual Stress Characteristics for Joint of Soft Rock in Ring Shear Tests)

  • 권준욱;김선명;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.281-288
    • /
    • 2000
  • In this study, we tried to determine failure criteria for joints of soft rock using ring shear test machine. The residual stress fellowing shear behavior was determined by the result of ring shear test and direct shear test. Ring shear test with the specimens which cover a large deformation range was adapted to measure a residual stress, and was possible to present the peak stress to present the peak stress to the residual stress at the same time. Residual stress is defined a minimal stress of specimens with a large displacement and the result of the peak residual stress is shown by a size of displacement volume. Therefore, the residual stress in soil was decided by shear stress of maximum shear stress - shear displacement(angle) based on the test result of a hyperbolic function ((equation omitted), a, b = experimental constant). In this study, it was proved that the residual stress of rock joint can be determined by using of this method.

  • PDF

Effects of silt contents on the static and dynamic properties of sand-silt mixtures

  • Hsiao, Darn H.;Phan, Vu T.A.
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.297-316
    • /
    • 2014
  • This paper presents a detailed study focused on investigating the effects of silt content on the static and dynamic properties of sand-silt mixtures. Specimens with a low-plastic silt content of 0, 15, 30 and 50% by weight were tested in static triaxial, cyclic triaxial, and resonant columns in addition to consolidation tests to determine such parameters as compression index, internal friction angle, cohesion, cyclic stress ratio, maximum shear modulus, normalized shear modulus and damping ratio. The test procedures were performed on specimens of three cases: constant void ratio index, e = 0.582; same peak deviator stress of 290 kPa; and constant relative density, $D_r$ = 30%. The test results obtained for both the constant-void-ratio-index and constant-relative-density specimens showed that as silt content increased, the internal friction angle, cyclic stress ratio and maximum shear modulus decreased, but cohesion increased. In testing of the same deviator stress specimens, both cohesion and internal friction angle were insignificantly altered with the increase in silt content. In addition, as silt content increased, the maximum shear modulus increased. The cyclic stress ratio first decreased as silt content increased to reach the threshold silt content and increased thereafter with further increases in silt content. Furthermore, the damping ratio was investigated based on different silt contents in three types of specimens.

Determination of stress state in chip formation zone by central slip-line field

  • Andrey Toropov;Ko, Sung-Lim
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 2003
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along single of several shear surfaces. separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests new approach to the constriction of slip-line field, which Implies uniform compression in chip formation zone. On the base of given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination have been considered. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model could be useful in solution of various problems of machining.

  • PDF

재구성 점토의 반복전단강도 및 전단탄성계수의 재하 주파수 의존성 (Loading Frequency Dependencies of Cyclic Shear Strength and Elastic Shear Modulus of Reconstituted Clay)

  • 이시가키 시게나오;연규석;김용성
    • 한국농공학회논문집
    • /
    • 제52권3호
    • /
    • pp.73-79
    • /
    • 2010
  • In the present study, the loading frequency dependencies of cyclic shear strength and elastic shear modulus of reconstituted clay were examined by performing undrained cyclic triaxial tests and undrained cyclic triaxial tests to determine deformation properties. The result of undrained cyclic triaxial test of reconstituted and saturated clay shows that a faster frequency leads to higher stress amplitude ratio, but when the frequency becomes fast up to a certain point, the stress amplitude ratio will reach its maximum limit and the frequency dependence becomes insignificant. And also, the result of undrained cyclic triaxial deformation test shows a fact that a faster loading frequency leads to higher equivalent shear modules and smaller hysteresis damping ratio, and confirms the frequency dependence of cohesive soil. Meanwhile, the result of the creep test shows that continuing creep is created in the undrained cyclic triaxial test with slow loading frequency rate, and since loading rate becomes slower at the vicinity of the maximum and the minimum deviator stress due to sine wave loading, the vicinity of the maximum and the minimum deviator stress shall be more influenced by creep.

사질지반에서 액상화 저항에 대한 선행전단응력의 영향 (Preshear Influence for Liquefaction Resistance in Sand)

  • 윤여원;김한범;김방식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.315-322
    • /
    • 2003
  • Cyclic simple shear tests were performed to find out the effect of preshear on dynamic strength of the sandy soil. Tests were performed for the specimens with 40% and 60% of relative density, under three different effective vertical stress of 50, 100 and 200kPa. For 50 and 100kPa, preshear ratios 0.00, 0.08, 0.12 and 0.16 were given, respectively, For low and high relative densities, two different results are shown in dynamic tests. Under the dense conditions, the maximum shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) and the cyclic shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) causing a certain shear strain increase with augmenting preshear ratio(${\alpha}$). However, the maximum shear stress ratio and the cyclic shear stress ratio increase or decrease with increasing preshear ratio under the loose conditions. Correction factor(K$\_$${\alpha}$/) for preshear increases at an early stage and then decreases with increasing preshear ratio at loose condition and increase with increasing preshear ratio at dense condition. Correction factor (K$\_$${\alpha}$,Max/) for preshear increases with the increasing preshear ratio irrespective of relative density, and the value of has same behavior as K$\_$${\alpha}$/.

  • PDF

복부대동맥류의 확장에 따른 유동 및 벽면전단응력 해석 (Analysis for the Flow and Wall Shear Stress with a Dilatation of an Abdominal Aortic Aneurysm)

  • 신상철;김경우;이건휘;모정하;김동현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.560-565
    • /
    • 2001
  • The objective of the present study is to investigate the characteristics for flow and wall shear stress in the aneurysm which is a local dilatation of the blood vessel. The numerical simulation using the commercial software for the laminar and steady flow were carried out over the diameter ratios(ratio of maximum diameter of aneurysm to the diameter of blood vessel) ranging from 1.5 to 2.5 and Reynolds number ranging from 900 to 1800. It was shown that a recirculating vortex occupied the entire bulge with its core located closer to the distal end of the bulge and the strength of vortex increased with increase of the Reynolds number and diameter ratio. Especially, for the Reynolds number of 1800 and diameter ratio of 2.5, the very weak secondary recirculating flow was produced at the left upper of the aneurysm. The position of a maximum wall shear stress was the distal end of the aneurysm(z=18mm) regardless of the Reynolds number and diameter ratios. But the maximum values of the wall shear stress increased in proportion to the increase of Reynolds number and diameter ratio.

  • PDF

복부대동맥류의 직경비에 따른 정상유동 및 맥동유동에 관한 수치적 연구 (A Numerical Study on the Steady and Pulsatile Flow with Various Diameter Ratios of Abdominal Aortic Aneurysm)

  • 모정하;박상규
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.920-928
    • /
    • 2003
  • The objective of the present study was to investigate the characteristics of flow and wall shear stress under steady and pulsatile flow in the aneurysm. The numerical simulation using the software were carried out for the diameter ratios ranging from 1.5 to 3.0, Reynolds number ranging from 900 to 1800 and Womersley number, 15.47. For steady flow, it was shown that a recirculating vortex occupied the entire bulge with its core located closer to the distal end of the bulge and the strength of vortex increased with increase of the Reynolds number and diameter ratio. The position of a maximum wall shear stress was the distal end of the aneurysm regardless of the Reynolds number and diameter ratios. For the pulsatile flow, a recirculating flow at the bulge was developed and disappeared for one period and the strength of vortex increased with the diameter ratio. The maximum values of the wall shear stress increased in proportion to the diameter ratio. However, the position of a maximum wall shear stress was the distal end of the aneurysm regardless of the diameter ratios.

Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology

  • Murugesan, Mohanraj;Kang, Beom-Soo;Lee, Kyunghoon
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.297-310
    • /
    • 2015
  • This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load. In addition, the effects of different material properties are investigated and compared. The obtained results reveal that the composite stiffened panel with Kevlar material is the most effective design.

내·외벽에 거칠기가 있는 이중동심관 유동에 대한 실험적 연구 (Experimental Investigation on the Flow in Concentric Annuli with Both Rough Walls)

  • 안수환;정양범;김경천
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.81-88
    • /
    • 1995
  • Fully developed turbulent flow through three concentric annuli with both the rough inner and outer walls was experimentally investigated for a Reynolds number range Re=15,000-85,000. Measurements were made of the pressure drop, the positions of zero shear stress and maximum velocity, and the velocity distributions in annuli of radius ratios, ${\alpha}=0.26$, 0.4 and 0.56, respectively. The experimental results showed that the positions of zero shear streess and maximum velocity were only weakly dependent on the Reynolds number. It was also found that the position of zero shear stress was not coincident with that of maximum velocity. Furthmore, the former was influenced more sensitively than the latter on the square-ribbed roughness along the axial direction.

  • PDF