• Title/Summary/Keyword: Maximum Power Generation

Search Result 735, Processing Time 0.036 seconds

Maximum Power Control of Tidal Current Generation System using P&O Algorithm (P&O알고리즘을 이용한 조류발전 시스템의 최대출력 제어)

  • Moon, Seok-Hwan;Kim, Ji-Won;Park, Byung-Gun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • Maximum Power Point Tracking (MPPT) control needs to generate the maximum power of a tidal current turbine. A tidal current speed sensor is required to achieve effective generated power in a tidal current generation system. The most common methods used to achieve such power is the tip speed ratio of turbine and tidal current information. However, these methods have disadvantages, such as expensive installation of the tidal current sensor, parameter errors in turbine design, and different information according to the installed position of the tidal current sensor. This paper proposes a maximum power control scheme using perturb-and-observe (P&O) for tidal current generation system. The proposed P&O MPPT scheme can achieve the maximum power without tidal current sensors and turbine design parameters. The reliability and suitability of the proposed control scheme are proven through simulation and experiment results at the tidal current generation laboratory.

MPPT Strategy to Improve Photovoltaic Power Generation Efficiency in Partial Shadows (부분 음영에서의 태양광 발전 효율을 높이기 위한 MPPT 전략)

  • Heo, Cheol-Young;Kim, Yong-Rae;Lee, Young-Kwoun;Lee, Dong-Yun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In order to increase the power generation efficiency of the photovoltaic system, a new algorithm that can follow the maximum power point of the photovoltaic power generation system having nonlinear output characteristics is proposed. Conventional maximum power point tracking (MPPT) algorithms such as Perturbation and Observation (P&O) and InCond (Increment and Conductance) schemes can not find the global maximum power point at a plurality of pole points in the unmatched state of unbalanced PV modules. However, even if the global maximum power point is found at a plurality of pole points, the global maximum power that can not be the real maximum power by the photovoltaic generation system. In order to solve this problem, a few PV companies propose installing several small PV inverters instead of if big one. However, since this will require additional costs, we herein propose a Multi-MPPT system using individual 3-point MPPT to track true MPPT at a plurality of pole points in the unmatched state of unbalanced PV modules.

Development of Multi-flat Reflector Sun Tracking System for Sun Photocell Maximum Power Generation (태양전지 최대전력 발생을 위한 다 평면 반사경 태양추적시스템 개발)

  • Lee, Kang-Sin;Lee, Hyun-Seog;Yoo, Seok-Ju;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.67-72
    • /
    • 2011
  • Recently, photovoltaic generator system is widely extended by energy policy of the government. Add to this, for high efficiency of power generation per natural light unit area is needed to sun tracking system. And it is needed to condensed light generator for reducer of equipment expense. As method of solving this problem, this paper is developed multi-flat reflector sun tracking system for sun photocell maximum power generation. The system is consisted of multi-flat reflector and two axes machinery and sun location perceiver and AVR controller. GaAs 3J cell generated 6.75 times power more than silicon cell by times condensing light system. As a result, condensing light system of multi-flat reflector generated maximum power and showed reducing costs to photovoltaic generator.

A Study on Configuration of Small Wind Turbines for Maximum Capacity of Wind Power Systems Interconnected With a Building (빌딩 내 최대 풍력발전설비 연계를 위한 소형풍력발전원 구성에 관한 연구)

  • Lee, Yeo-Jin;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.605-612
    • /
    • 2017
  • One of the biggest environmental issues that our world has been facing is climate change. In order to cope with such environmental issues, the world is putting a great deal of effort into energy conservation. The building sector, in particular, consumes 36% of the energy consumed worldwide and emits considerable amount of greenhouse gases. Therefore, introduction of renewable energies in the building sector is highly recommended. Renewable energy sources that can be utilized in the building sector include sunlight, solar heat, geothermal heat, fuel cells and wind power. The wind power generation system which converts wind energy into electrical energy has advantages in that wind is an unlimited and pollution-free resource. It is suitable to be connected to existing buildings because many years of operational experience and the enhanced stability of the system have made it possible to downsize the electrical generator. In case of existing buildings, it is necessary to consider the live loads of the buildings to connect the wind power generation system. This paper, through the connection of the wind power generation with existing buildings, promotes reduction of greenhouse gas emissions and energy independence by reducing energy consumption in the building sector. In order to connect the wind power generation system with an exciting building, the live load of the building and the area of the rooftop should be considered. The installable model is selected by comparing the live load of the building and the load of the wind power generation system. The maximum number of the wind turbines that can be installed is obtained by considering the separation distance between the wind turbines within the area of the rooftop. Installations are divided into single installations and multiple installations of two different types of wind turbines. After determining the maximum installable number, the optimal model that can achieve the maximum annual power generation will be selected by comparing the respective total annual amount of the power generation of different models.

Analysis of Maximum Power Generation of Photovoltaic Module Depending on Constituent Materials and Incident Light Characteristics (구성 재료와 방사조도 특성에 따른 태양전지모듈의 최대출력 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we analyze the maximum power generation of photovoltaic(PV) module depending on constituent materials and incidence angle dependence of light. To verify characteristics of constituent materials, we made photovoltaic modules with 4 kinds of solar cells and textured glass according to fabrication method. To find the degree of the maximum power generation dependence on intensity of light, Solar Simulator is applied by changing angle of module and light intensity. Through this experiment, to obtain maximum power generation from limited PV modules, it is needed to fully understand constituent materials, fabrication method and dependence of incident light characteristics.

Maximum Output Control of Cage-Type Induction Generator for Wind Power Generation (풍력발전용 농형유도발전기의 최대출력제어)

  • Koo, Seoung-Young;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.288-292
    • /
    • 2001
  • In this paper, a maximum power control of a low-cost and rugged cage-type induction generator system is proposed, where the machine-side PWM converter is used for maximum power generation and field excitation control, and the line-side PWM inverter is used for the dc link voltage control and source-side power factor control. Simulation results through Matlab Simulink have been demonstrated.

  • PDF

Comparative Study of Artificial-Intelligence-based Methods to Track the Global Maximum Power Point of a Photovoltaic Generation System (태양광 발전 시스템의 전역 최대 발전전력 추종을 위한 인공지능 기반 기법 비교 연구)

  • Lee, Chaeeun;Jang, Yohan;Choung, Seunghoon;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.297-304
    • /
    • 2022
  • This study compares the performance of artificial intelligence (AI)-based maximum power point tracking (MPPT) methods under partial shading conditions in a photovoltaic generation system. Although many studies on AI-based MPPT have been conducted, few studies comparing the tracking performance of various AI-based global MPPT methods seem to exist in the literature. Therefore, this study compares four representative AI-based global MPPT methods including fuzzy logic control (FLC), particle swarm optimization (PSO), grey wolf optimization (GWO), and genetic algorithm (GA). Each method is theoretically analyzed in detail and compared through simulation studies with MATLAB/Simulink under the same conditions. Based on the results of performance comparison, PSO, GWO, and GA successfully tracked the global maximum power point. In particular, the tracking speed of GA was the fastest among the investigated methods under the given conditions.

Maximum Output Power Control for Stand-Alone Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 독립형 풍력발전시스템의 최대출력제어)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, a maximum output power control of stand-alone cage-type induction generator systems for wind power generation is proposed. The induction generator is operated in a vector-controlled mode, which is excited with d-axis current and of which torque is controlled with q-axis current. The generator speed is controlled by this torque, along which speed the generator produces the maximum output power. The generated power charges the battery bank for energy storage through an ac/dc PWM converter. The proposed scheme has been verified for the wind turbine simulator system which consists of M-G set.

Submodule Level Distributed Maximum Power Point Tracking PV Optimizer with an Integrated Architecture

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Shi, Shuhuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1308-1316
    • /
    • 2017
  • The distributed maximum power point tracking (DMPPT) concept is widely adopted in photovoltaic systems to avoid mismatch loss. However, the high cost and complexity of DMPPT hinder its further promotion in practice. Based on the concept of DMPPT, this paper presents an integrated submodule level half-bridge stack structure along with an optimal current point tracking (OCPT) control algorithm. In this full power processing integrated solution, the number of power switches and passive components is greatly reduced. On the other hand, only one current sensor and its related AD unit are needed to perform the ideal maximum power generation for all of the PV submodules in any irradiance case. The proposal can totally eliminate different small-scaled mismatch effects in real-word condition and the true maximum power point of each PV submodule can be achieved. As a result, the ideal maximum power output of the whole PV system can be achieved. Compared with current solutions, the proposal further develops the integration level of submodule DMPPT solutions with a lower cost and a smaller size. Moreover, the individual MPPT tracking for all of the submodules are guaranteed.

A Utility Interactive Photovoltaic Generation System using PWM Chopper and Current Source Inverter (PWM 쵸퍼와 전류형 인버터를 이용한 계통연계형 태양광발전시스템)

  • 이승환;성낙규;오봉환;검성남;이훈구;김용주;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.323-329
    • /
    • 1998
  • In this paper, we compose of the utility interactive photovoltaic(PV) generation system with a PWM stepdown chopper and a current source inverter. The stepdown chopper is controlled by the several gate pulses (twice frequency of utility voltage, square pulse and without the chopper) of chopper part to reduce pulsation of DC current and size of DC reactor. PV current only is measured for maximum power point tracking without any influence on the variation of insolation and temperature. Therefore, we can control modulation factor of the chopper to operate at maximum power point of solar cell. And, the utility interactive photovoltaic generation system supplies an AC power to the load and the utility power system.

  • PDF