• Title/Summary/Keyword: Maximum Number

Search Result 4,874, Processing Time 0.034 seconds

Analysis of a Convective, Radiating Rectangular Fin (대류, 복사 사각 핀의 해석)

  • Kang, Hyung-Suk;Kim, Jong-Ug
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.29-34
    • /
    • 2006
  • A convective, radiating rectangular fin is analysed by using the one dimensional analytic method. Instead of constant fin base temperature, heat conduction from the inner wall to the fin base is considered as the fin base boundary condition. Radiation heat transfer is approximately linearized. For different fin tip length, temperature profile along the normalized fin position is shown. The fin tip length for 98% of the maximum heat loss with the variations of fin base length and radiation characteristic number is listed. The maximum heat loss is presented as a function of the fin base length, radiation characteristic number and Biot number.

  • PDF

The Braking Performance of Touch Free Linear Eddy Current Brake According to The number of Poles (극수변화에 따른 비접촉 와전류 제동기의 제동 특성)

  • Ha, Kyung-Ho;Kim, Young-Kyoun;Hong, Jung-Pyo;Kim, Gyu-Tak;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.91-93
    • /
    • 1998
  • This paper describes the braking performance of the eddy current brake for high speed trains according to the number of poles. The eddy current brake systems have to be equipped with the maximum braking force and deceleration in the given volume or mass, high braking force rate, as small normal forces as possible and stable construction. The parameters, such as the number of poles, electric ampere turns, slot width have influence on the braking force characteristics. In this paper, the effect of braking performance from the variation of the number poles is calculated by using FEM, the number of the pole which makes the maximum braking force is proposed.

  • PDF

Shannon Entropy as an Indicator of the Spatial Resolutions of the Morphologies of the Mode Patterns in an Optical Resonator

  • Park, Kyu-Won;Kim, Jinuk;Moon, Songky
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • We present the Shannon entropy as an indicator of the spatial resolutions of the morphologies of the resonance mode patterns in an optical resonator. We obtain each optimized number of mesh points, one of minimum size and the other of maximum one. The optimized mesh-point number of minimum size is determined by the identifiable quantum number through a chi-squared test, whereas the saturation of the difference between Shannon entropies corresponds to the other mesh-point number of maximum size. We also show that the optimized minimum mesh-point increases as the (real) wave number increases and approximates the proportionality constant between them.

Three-dimensional Stress Analysis of Implant Systems with Micro Threads in the Maxillary Bone (다양한 마이크로쓰레드(Micro thread)의 개수를 가지는 임플란트의 상부구조물 형상과 하중조건에 따른 3차원 유한요소해석을 이용한 하악골의 응력분포에 관한 연구)

  • Shin Ha-Shik;Han Chong-Hyun;Lee Soo-Hong;Chun Heoung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.179-186
    • /
    • 2005
  • A comparative study of stress distributions in the maxillary bone with three different types of abutment was conducted. Finite element analysis was adopted to determine stress generated in the bone with the different implant systems with micro threads (Onebody type implant, Internal type implant, and External type implant). It was found that the types of abutments and the number of micro threads have significant influence on the stress distribution in the maxillary bone. They were due to the difference in the load transfer mechanism and the size of contact area between abutment and fixture. Also the maximum effective stress in the maxillary bone was increased with increasing inclination angle of load. It was concluded that the maximum effective stress in the bone was the lowest by the internal implant among the maximum effective stresses by other two types of implants and by appropriate number of micro threads, and that the specific number of micro thread was existed to decrease the maximum effective stress in the maxillary bone due to different implant systems and loading conditions.

The Stress Distribution around the Hole with Pin-hole on Rotating Disc (회전체 원판의 원공주위의 핀홀에 의한 응력분포)

  • 한근조;안찬우;심재준;한동섭;이성욱;김병진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.761-764
    • /
    • 2002
  • This paper deals with the stress concentration of the rotating disc in detail. We studied maximum stress of rotating disc with respect to the various parameter of circular hole such as position, size, number of the hole, then the mollified effect of maximum stress due to pin-hole around circular hole, using FEM, the results are as follows: 1. The more the number of circular hole and the further from the center, the maximum equivalent stress reduces. 2. When the pin-hole is located 60$^{\circ}$ from the x-axis, the maximum stress reduces significantly due to the effect of interference.

  • PDF

Optimal Number of Users in Zero-Forcing Based Multiuser MIMO Systems with Large Number of Antennas

  • Jung, Minchae;Kim, Younsun;Lee, Juho;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.362-369
    • /
    • 2013
  • The optimal number of users achieving the maximum sum throughput is analyzed in zero-forcing (ZF) based multiuser multiple-input multiple-output (MIMO) systems with a large number of base station (BS) antennas. By utilizing deterministic ergodic sum rates for the ZF-beam forming (ZF-BF) and ZF-receiver (ZF-R) with a large number of BS antennas [1], [2], we can obtain the ergodic sum throughputs for the ZF-BF and ZF-R for the uplink and downlink frame structures, respectively. Then, we can also formulate and solve the optimization problems maximizing the ergodic sum throughputs with respect to the number of users. This paper shows that the approximate downlink sum throughput for the ZF-BF is a concave function and the approximate uplink sum throughput for the ZF-R is also a concave function in a feasible range with respect to the number of users. The simulation results verify the analyses and show that the derived numbers of users provide the maximum sum throughputs for the ZF-BF as well as ZF-R in multiuser MIMO systems with a large number of BS antennas.

Production of Bacillus thuringiensis Spore Using an Industrial Medium (산업용 배지를 이용한 Bacillus thuringiensis의 포지생산)

  • 최성호;강석권;유연우
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.644-648
    • /
    • 1998
  • In the production of a low cost bacterial insecticide, it is important to produce a high spore concentration using low price substrates. Experiments were carried out to investigate the effects of the addition of mineral salts and glucose, and of dissolved oxygen concentration on the cell growth and spore formation of Bacillus thuringiensis var aizawai using a cheap wheat and soybean meal in the batch culture. The maximum viable cell number was 1.2${\times}$109 CFU/mL at 12 hr culture and spore yield was 54.2% at 74 hr culture using an industrial medium containing 20 g/L wheat meal and 30 g/L soybean meal under 1.0 vvm aeration and 200 rpm agitation. The cell growth and the spore formation were not enhanced by the addition of mineral salts in industrial medium, whereas th addition of 10g/L glucose decreased the cell growth and spore formation. We could obtain a maximum viable cell number of 2.2${\times}$109 CFU/mL and spore number of 1.9${\times}$109 CFU/mL at the dissolved oxygen concentration of 60% of saturation. The spore concentration was enhanced approximately by 2 times as compared to the dissolved oxygen concentration of 50%. In the bench-scale culture, the maximum viable cell and spore number were 2.5${\times}$109 CFU/mL, and 2.2${\times}$109 CFU/mL, respectively under 1.0 vvm aeration and 400 rpm agitation. The spore yield was 88% based on the maximum viable cell number. As a result, it was confirmed that the production of high spore concentration could be obtained by a bench-scale culture using an industrial medium.

  • PDF

Investigation of the Effects of Resting Time and Trial on the Maximal Grip Strength

  • Kwak, Doo-Hwan;Lee, Kyung-Sun;Kwag, Jong-Seon;Jung, Myung-Chul;Kong, Yong-Ku
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.381-387
    • /
    • 2011
  • Objective: The aim of this study was to investigate the maximal grip strength for the combinations of resting time and trial and to provide guideline of resting time for the maximum gripping task associated with the number of trials. Background: Despite many previous researches for the maximal grip strength, few studies have considered the effect of both trials and rest time on the maximum grip strength. Methods: A total of thirty subjects participated in the study. The average of maximum grip strength was measured using JAMAR hydraulic hand dynamometer. The testing position was same as the position recommended by the American Society of Hand Therapists. The between-subject experimental design has been conducted in this study. Trials(1~20 trials) and rest time(2, 3, and 4min) were considered as independent variables, and the maximum grip strength was considered as dependent variable, respectively, in this study. Results: According to the result of the number of trials, the maximal grip strength decreased gradually as the number of trials increased. The ANOVA result showed that the main effect was significant for both resting time(p<.0001) and trial(p<.0001), and the interaction was significant(p<0.0086). Conclusions: The maximal grip strength decreased gradually as the number of trials increased. Thus, basic guideline of resting time was suggested for the number of trials of maximal grip strength tests in this study.

A survey of the actual operating status of coastal composite fishery (octopus pot) in the Jeonnam waters (전남지역 연안복합(문어단지) 어업의 조업실태 조사)

  • KOO, Myung-Sung;CHO, Sam-Kwang;BAE, Bong-Seong;CHA, Bong-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.292-301
    • /
    • 2021
  • Interviews and boarding surveys were conducted in order to understand the actual usage of octopus pot in the coastal composite fishery in Jeollanam-do. According to the results of the interviews conduced by visiting the areas (Goheung, Yeosu and Wando), the number of octopus pots per nine-ton vessel were 30,000-80,000, and the number of daily usage pots were 7,000-10,000. The number of octopus pots per four-ton vessel was 40,000, and the number of daily usage pots were 4,000. As a result of the survey on two octopus pot fishing boats (9.77-ton and 4.99-ton) in Yeosu area, the daily catch weight of 9-ton class vessel was the minimum of 66.9 kg and the maximum of 159.6 kg. The daily catch weight of the four-ton class fishing vessel was from 31.3 kg to maximum 85.6 kg. The average number of octopus pot used per day in the nine-ton class vessel was 6,821 (the minimum of 6,031 and the maximum of 7,697) and 3,181 (the minimum of 2,282 and the maximum of 3,878) in the four-ton class vessel.

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.