• Title/Summary/Keyword: Maximum Material Condition

Search Result 445, Processing Time 0.026 seconds

A study on the etch characteristics of BST thin films using inductively coupled plasma (유도결합 플라즈마를 이용한 BST 박막의 식각 특성 연구)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Tae-Hyung;Lee, Chul-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.22-25
    • /
    • 2004
  • In this study, BST thin films were etched with inductively coupled $CF_4/(Cl_2+Ar)$ plasmas. The etch characteristics of BST thin films as a function of $CF_4/(Cl_2+Ar)$ gas mixtures were analyzed using quadrupole mass spectrometry (QMS) and optical emission spectroscopy (OES). The maximum etch rate of the BST thin films was 53.6 nm/min because small addition of $CF_4$ to the $Cl_2/Ar$ mixture increased chemical effect. The optimum condition appears to be under a 10 % $CF_4/(Cl_2+Ar)$ gas mixture in the present work.

  • PDF

Evaluation of Installation Damage Factor for Geogrid with Particle Size (입도에 따른 지오그리드의 시공손상계수 산정)

  • Lim, Seong-Yoon;Song, Chang-Seop
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Reduction factor for installation damage required to calculate design strength of geogrid used in MSEW(mechanically stabilized earth wall) design is usually obtained in the field test simulating real construction condition. However, damages occurred in geogrid during backfill work are influenced by many factors such as polymer types, unit weight per area, backfill construction method and gradation of backfill material and field test considering these factors demand lots of time and costs. In this study, factors affecting installation damage are analyzed and empirical method to evaluate reduction factor for installation damage using maximum particle size in backfill material is suggested.

The Properties of Ar RF Plasma Using 1- and 2-dimensional Model (1,2차 모델링을 이용한 Ar RF 플라즈마의 응답 특성)

  • 박용섭;정해덕
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.622-628
    • /
    • 2001
  • We developed 1- and 2-dimensional fluid model for the analysis of a capacitively coupled Ar RF(Radio Frequency) glow discharge. This discharge is in pure Ar gas at the pressure 100[mTorr], frequency 13.56[MHz] and voltage amplitude 120[V}. This model is based on the equations of continuity and electron energy conservation coupled with Poison equation. 2-dimensional model is simulated on the condition of GEC(Gaseous Electronic Conference cell). The geometry of the discharge chamber and the electrodes used in the model is cylindrically simmetric; tow cylinders for the electrodes are surrounded by the grounded chamber. It is shown that 1-dimensional model is very useful on the understanding of RF glow discharge property and of the movement of charged particles. 2-dimensional model predicts off-axis maximum structure as in the experiments and has the results in qualitatively and quantitatively good agreement with the experiments. Effects of dc self-bias voltage, guard ring and reactor geometry is discussed.

  • PDF

Application of Electrochemical Etch-stop in TMAH/IPA/pyrazine Solution to Pressure Sensors (TMAH/IPA/pyrazine용액에 있어서 전기화학적 식각정지법의 압력센서에의 응용)

  • 박진성;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.423-426
    • /
    • 1998
  • Piezoresistive pressure sensors have fabricated using electrochemical etch-stop technique. Si diaphragm having thickness of n-epi. layer was fabricated and used to detect pressure range from 0 to 1 kg/$\textrm{cm}^2$. Piezoresistors were diffused 3${\times}$10$\^$18/ cm$\^$-3/ and placed at diaphragm edge for maximum pressure detection. The characteristics of electrochemical etch-stop in TMAH/lPA/pyrazine solution were also discussed. I-V curves of n and p-type Si in TMAH/lPA/pyrazine solution were obtained. Etching rate is highest at optimum etching condition, TMAH 25wt.%/IPA 17vo1.%/pyrazine 0.1/100m1, thus the elapsed time of etch-stop was reduced.

  • PDF

Effect of Tension and Wind Velocity on Temperature of ACSR Overhead Conductor (장력과 풍속이 ACSR 가공송전선의 온도에 미치는 영향)

  • Kim Shang-Shu;Kim Byung-Geol;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.480-485
    • /
    • 2006
  • A research was undertaken on the thermal properties and behavior of the conductors in a controlled chamber, which was designed to implement the outdoor air temperature, heat and wind conditions With ACSR $410mm^2$ overhead conductors, we measured the maximum temperature of the conductors and the temperature gradient from the core to the surface regions as a function of current, tension, wind velocity and outdoor air temperature. This test also provided a comparative analysis between the measured temperature values of conductors in the controlled chamber and the theoretical calculations of ANSI/IEEE at normal condition. There was not much influence of tension on the conductor temperature. However, the compactness of conductor wires increased with an increase in tension, which eventually increased the coefficient of effective thermal conductivity and, accordingly the conductor temperature was reduced more or less.

Effect of Ambient Temperature and Current on Overhead Conductor (가공송전선의 열적거동과 전류 및 외기온도의 영향)

  • Kim Shang-Shu;Kim Byung-Geol;Hyun Suk-Kyu;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.486-491
    • /
    • 2006
  • A research was undertaken on the thermal properties and behavior of the conductors in a controlled chamber, which was designed to implement the outdoor air temperature, heat and wind conditions. With ACSR $410mm^2$ overhead conductors, we measured the maximum temperature of the conductors and the temperature gradient from the core to the surface regions as a function of current, tension, wind velocity and outdoor air temperature. This test also provided a comparative analysis between the measured temperature values of conductors in the controlled chamber and the theoretical calculations of ANSI/IEEE at normal condition.

Fabrication of Ceramic Thin Film Type Pressure Sensors for High-Temperature Applications and Their Characteristics (고온용 세라믹 박막형 압력센서의 제작과 그 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.790-794
    • /
    • 2003
  • This paper describes the fabrication and characteristics of ceramic thin film type pressure sensors based on Ta-N strain gauges for high temperature applications. Ta-N thin-film strain gauges are deposited onto a thermally oxidized Si diaphragm by RF sputtering in an argon-nitrogen atmos[here($N_2$ gas ratio: 8%, annealing condition: 90$0^{\circ}C$, 1 hr.), patterned on a wheatstone bridge configuration, and used as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is 1.097 ~ 1.21 mV/Vㆍkgf/$\textrm{cm}^2$ in the temperature range of 25 ~ 200 $^{\circ}C$ and the maximum non-linearity resistance), non-linearity than existing Si piezoresistive pressure sensors. The fabricated ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that os operable under high-temperature.

The Thermal Analysis of Te-based media for Optica1 Recording (광기록에 이용되는 Te-based Mediao에 대한 열적 해석)

  • 천석표;이성준;이현용;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.123-126
    • /
    • 1994
  • We discussed the thermal analysis for recording media with the variation of the laser pulse duration and the power and the temperature distribution for the optimized Te-based antireflection structure by using the computer calculations. If the radial diffusion of heat is negligible, we can calculate the maximum temperature at the spot center in recording layer by Simple Method, and the temperature profile considering the specific heat and the latent heat by Numerical Method. As a result, the effect of the heat sinking which acted as a loss for the hole formation can be minimized by introducing the pulse of the hole formation duration( $\tau$ ) shorter than the thermal time constant( $\tau$$\sub$D/) of dielectric layer. This requirments can be satisfied as using the dielectric thickness of the 7nd ART condition or the dielectric materials with low thermal diffusivity.

  • PDF

The Effect of Different Iron Oxides Produced from Steel Plants in the Magnetic Properties of Cabined Sr-ferrite Powders. (염산폐액 정제방법에 따른 산화철이 Sr-ferrite의 히소특성에 미치는 영향)

  • 김효준;조태식;양충진;남효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.124-127
    • /
    • 1997
  • The magnetic properties of calcined Sr-ferrites, related to the iron oxides, produced from three different process in steel plants, have been investigated. The powder f.characteristics of iron oxides are much affected on the magnetic properties of calcined Sr-ferrite Powders. It was possible to improve the magnetic property of calcined Sr-ferrites with the iron oxide powders of small size and narrow size distribution. The maximum magnetic properties of calcined Sr-ferrites, showing 69 emu/g of saturation magnetization and 4020 Oe of intrinsic coercivity, are achieved at the following conditions; the iron oxides from the chemirite process(EP), mole ratio of 5.8, and calcination condition of 120$0^{\circ}C$/1hr.

  • PDF

Low Cost Design Study of Brushless DC Motor for Electric Water Pump Application

  • Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.942-949
    • /
    • 2014
  • We studied about the rotor design change using a Ferrite ring magnet to reduce material cost in the condition of the same stator core design. However, this design direction has many weak points such as the decrease of BEMF, the low maximum output, the irreversible demagnetization characteristics of a permanent magnet and so on. In order to mitigate such disadvantages, an optimization design of the BLDC motor has been developed by changing each design parameter and by improving the electromagnetic structure. In the proposed water pump SPM BLDC motor using Ferrite magnet, the outer and inner diameter of stator is fixed to the value of the conventional IPM BLDC motor using Nd-Fe-B magnet. The design specification requirements should be satisfied with the same output power and efficiency characteristics in the same dimension. As a result of this study, the design comparison results considering driving performances and material cost are represented. Through the actual experiment with the prototype of the designed motor, the simulations results are verified.