• 제목/요약/키워드: Maximum Hardness Test

검색결과 156건 처리시간 0.023초

Cure Characteristics, Mechanical Property and Ozone Resistance of Natural Rubber/Bromo Isobutylene Isoprene Rubber Blend

  • Choi, Im Cheol;Lee, Won-Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • 제53권3호
    • /
    • pp.168-174
    • /
    • 2018
  • Natural rubber (NR) and bromo-isobutylene-isoprene rubber (BIIR) were compounded with other formulation chemicals through polymer blending via a mechanical mixing method. After rubber vulcanization by hot-press compression molding, the cure characteristics, mechanical properties, and ozone resistance of the NR/BIIR blends were measured. As the BIIR content increased, the maximum torque of the blends decreased, while the optimum cure time and scorch time tended to increase. Furthermore, the hardness of the blends increased with increasing BIIR content, reaching the maximum value at 75 wt% BIIR, and decreased with a further increase in the BIIR loading. The tensile strength and elongation at break decreased with an increase in the BIIR content, reaching the minimum value at 75 wt% BIIR, and increased with a further increase in the BIIR content. In the ozone resistance test, cracks were not generated when the BIIR content was more than 75 wt%.

Study on the Wear Characteristics of Gray Cast Iron under Dry Rolling Condition (건식조건하(乾式條件下)에서 회주철(灰鑄鐵)의 로링마모(磨耗)에 관(關)한 연구(硏究))

  • Choi, Chang-Ock;Kim, Dong-Yun
    • Journal of Korea Foundry Society
    • /
    • 제3권2호
    • /
    • pp.92-99
    • /
    • 1983
  • This study has been carried out to investigate into the difference of rolling life and rolling wear characteristics for various gray cast iron under unlubricated dry rolling condition by amsler type wear test with 9.09% sliding.The results obtained from this study are summerized as follows: 1) It has been found that the amount of rolling wear id decreased when tensile strength and hardness are low, and then the rolling life up to generation of abnormal wear is conspicuously increased. 2) At the given condition the amount of rolling wear has been found to decrease as carbon equivalent of gray cast iron increases and resistance of crack propagation is an important factor on improvement of wear characteristics. 3) The amount of rolling wear is increased with increasing rolling revolution and wear of gray cast iron under dry rolling condition is characterized by three modes; initial wear, stationary wear and abnormal wear. 4) It has been found that the amount of rolling wear is increased with increasing maximum compressive stress and extremely increased when maximum compressive stress is over 59.1kg.f/mm.

  • PDF

The study on corrosion fatigue and cathodic protection of the steel plates used for the shipbuilding (조선용강재의 부식피로와 전기방식에 관한 연구)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.126-142
    • /
    • 1985
  • The plane bending corrosiion fatigue test for the welded metal parats was performed in the air and in the natural sea water with and without applying cathodic protection. The specimens tested were the weld of SM41 steel plates, SM58 steel plates and of SM41 to SM58, which were all prepared by submerged arc welding. The main results obtained from the experiment are summarized as follows: (1) In case with SM41 and SM58 steel plates, lower value of impact strength, higher value of hardness and more noble electrode potential were observed in the welded metal part than in the HAZ and base metal. Also the lowest hardness zone in the HAZ was observed with SM58 which was not found with SM41. In case with weld specimen of SM41 to SM58, the impact strength and the electrode potential of the welded metal part showed again the lowest and most noble value but the hardness value was located between those of SM41 and SM58 base metal. (2) In the fatigue test, the specimens tested in the air and under the cathodic protection were both cracked in a purely mechanical mode, but the specimens tested without cathodic protection were cracked by the combination of mechanical fracture and electro-chemical corrosion. (3) The corrosion fatigue limit of the welded metal parts of the specimen was increased by the cathodic protection. As the protection potential was varied down to -800 mV vs. SCE the fatigue limit was increased to the value tested in the air, and the maximum fatigue limit appeared at the -1, 000 - -1, 200 mV vs. SCE. However, as the protection potential was further decreased below -1, 200 mV vs.SCE, the fatigue limit of weld of SM58 and of SM41-SM58 joining was decreased but the limit was almost constant in the case of weld of SM41. (4) It is suggested that when designing steel ship the corrosion fatigue limit of welded metal parts should be stressed as a designing strength of the structure of steel ship in addition to the conventional basis considering simply tensile strength of steel and safety factor.

  • PDF

Comparison between a bulk-fill resin-based composite and three luting materials on the cementation of fiberglass-reinforced posts

  • Carlos Alberto Kenji Shimokawa ;Paula Mendes Acatauassu Carneiro ;Tamile Rocha da Silva Lobo;Roberto Ruggiero Braga ;Miriam Lacalle Turbino;Adriana Bona Matos
    • Restorative Dentistry and Endodontics
    • /
    • 제48권3호
    • /
    • pp.30.1-30.11
    • /
    • 2023
  • Objectives: This study verified the possibility of cementing fiberglass-reinforced posts using a flowable bulk-fill composite (BF), comparing its push-out bond strength and microhardness with these properties of 3 luting materials. Materials and Methods: Sixty endodontically treated bovine roots were used. Posts were cemented using conventional dual-cured cement (CC); self-adhesive cement (SA); dual-cured composite (RC); and BF. Push-out bond strength (n = 10) and microhardness (n = 5) tests were performed after 1 week and 4 months of storage. Two-way repeated measures analysis of variance (ANOVA), 1-way ANOVA, t-test, and Tukey post-hoc tests were applied for the push-out bond strength and microhardness results; and Pearson correlation test was applied to verify the correlation between push-out bond strength and microhardness results (α = 0.05). Results: BF presented higher push-out bond strength than CC and SA in the cervical third before aging (p < 0.01). No differences were found between push-out bond strength before and after aging for all the luting materials (p = 0.84). Regarding hardness, only SA presented higher values measured before than after aging (p < 0.01). RC and BF did not present 80% of the maximum hardness at the apical regions. A strong positive correlation was found between the luting materials' push-out bond strength and microhardness (p < 0.01, R2 = 0.7912). Conclusions: The BF presented comparable or higher push-out bond strength and microhardness than the luting materials, which indicates that it could be used for cementing resin posts in situations where adequate light curing is possible.

A study on Creep of Plate PMMA in Thermal-Nanoindentation Process for Hyperfine pit structure Fabrication (극미세 점 구조체 제작을 위한 열간나노압입 공정에서의 평판형 PMMA의 크립현상에 관한 연구)

  • Lee, E.K.;Jung, Y.N.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.273-276
    • /
    • 2008
  • Thermoplastic resin takes place stress relaxation and creep according to temperature and time. In room temperature, time dependent deformation (TDD) of polymer was carried out at previous study. In this study, it evaluates time dependent deformation to relate temperature. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is important to control pattern depth for change of indent depth by creep when using Nanoindenter. For evaluating TDD at high temperature, it is occurred thermal-nanoindentation test by changing hold time at maximum load. Temperature is putted at $90^{\circ}C$, hold time at maximum loads are putted at 1, 10, 50, 100, 200, 300 and 500s.

  • PDF

Microstructure, Defects and Mechanical Properties of DED Metal Deposited Heat-Resistant Mold Steel (내열 금형강 DED 금속적층재의 조직, 결함 및 기계적 물성 평가)

  • Choi, Sung-Jong;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제21권3호
    • /
    • pp.12-21
    • /
    • 2022
  • Directed energy deposition (DED) was adopted as a metal additive manufacturing method to develop a mold for the hot stamping process. The test piece was machined from Heatvar laminate material, and results were obtained through microstructure and defect observations, as well as hardness, tensile strength, and joint strength tests. 1) Spherical pores and irregular-shaped cavities were observed as lamination defects, and columnar dendrites formed in the structure, which tended to become coarse upon heat treatment. 2) The hardness of the heat-treated material (480HV) was slightly lower than that of the non-heat-treated material (500HV). 3) In the tensile test, the maximum tensile stress and strain of the heat-treated material were 1392 MPa and 15%, respectively, which were slightly higher than the values of 1381 MPa and 13%, respectively, for the non-heat-treated material. 4) In the case of the early final fracture in the tensile test, in most cases, pores or irregularly shaped cavities were observed at the fracture surface or near the surface. 5) In the joint strength test, most of the specimens finally fractured in the laminated metal area, and the fracture surface was intragranular. In addition, dimples formed over the entire area on the fracture surface of the fractured specimen after sufficient elongation.

Surface Quality and Corrosion of Additively Manufactured STS316L Treated by Ultrasonic Nanocrystal Surface Modification (적층제조된 스테인레스 316L에 대한 초음파나노표면개질에 따른 표면특성 및 부식성에 관한 연구)

  • Kim, Jun-Ho;Oh, Yeong-Taek;Park, Han-Byeol;Lee, Dong-Ho;Kim, Hwa-Jeong;Kim, Ui-Jun;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권8호
    • /
    • pp.94-103
    • /
    • 2020
  • This study investigated the effects of ultrasonic nanocrystal surface modification (UNSM) on the deteriorated surface of AISI SUS316L additively manufactured (AM) using the powder bed fusion (PBF) technique. Specifically, the effects of UNSM conditions on surface topology, hardness, and anti-corrosion were examined. Before UNSM treatment, the stainless steel 316L powder was processed via the PBF machine to prepare a substrate. We observed surface changes due to UNSM treatments in PBF SUS316L substrates and examined the correlation between topology changes, roughness, hardness, and anti-corrosion. After UNSM treatment, the coarse as-built surface was refined, and a regular micro-profile was implemented. Compared to the non-treated PBF sample, the waviness and roughness of the surfaces after UNSM treatment decreased by up to 56.0% and 94.5%, respectively, and decreased further as the interval decreased. The hardness improved by up to 63.0% at a maximum depth of 500 ㎛ from top surface by the UNSM treatment. The results of the corrosion test showed that the corrosion resistance of the UNSM specimens was moderately improved compared to that of the untreated surface. This study confirmed that UNSM is an effective post-processing technique for additively manufactured parts.

Effect of the welding speed on the characteristics of Nd:YAG laser welds for automotive application : 600MPa PH high strength steel (600MPa급 자동차용 석출경화형 고장력강판 Nd:YAG 레이저 용접부의 특성에 미치는 용접속도의 영향)

  • Han, Tae-Kyo;Jung, Byung-Hun;Kang, Chung-Yun
    • Laser Solutions
    • /
    • 제10권3호
    • /
    • pp.25-32
    • /
    • 2007
  • The effect of welding speed on the weldability, microstructures, hardness, tensile property of Nd:YAG laser welding joint in 600MPa grade precipitation hardening high strength steel was investigated. A shielding gas was not used, and bead-on-plate welding was performed using various welding speeds at a power of 3.5kW. Porosity in the joints occurred at 1.8m/min, but were not observed over the welding speed of 2.1m/min. However, spatter occurred over the welding speed of 6.6m/min. The hardness was the highest at heat affected zone(HAZ) near fusion zone(FZ), and was decreased on approaching to the base metal. The maximum hardness increased with increasing welding speed. The microstructure of FZ was composed of coarse grain boundary ferrite and bainite(upper) but the HAZ near the FZ contained bainite(Lower) and fine ferrite at a low welding speed. With increasing welding speed, ferrite at the FZ and the HAZ became finely and upper binite changed to lower bainite. In a perpendicular tensile test to the weld line, all specimens were fractured at the base metal, and the tensile strength and the yield strength of joints was equal to those of raw material. Elongation was found to be lower than that of the raw material.

  • PDF

Characterization of Microstructure and Mechanical Properties of High-Purity Iron Added with Copper

  • Taguchi, O.;Lee, Su Yeon;Uchikoshi, M.;Isshiki, M.;Lee, Chan Gyu;Suzuki, S.;Gornakov, Vladimir S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제25권1호
    • /
    • pp.22-26
    • /
    • 2012
  • An influence of the addition of copper (0.5, 1.0 and 1.5 mass% Cu) on the microstructure and mechanical properties of high purity iron (99.998 mass%) was characterized. The microstructure and microhardness of high-purity iron based samples, which were rolled at room temperature and subsequently annealed, were investigated in this work. The microstructure of the samples has been observed by electron back scattering diffraction (EBSD) and the mechanical properties have been studied by using micro-Vickers hardness test. The results of microstructural observation showed that deformation band was formed in high purity iron by rolling at room temperature, and it was recovered by annealing up to about 900 K. The microhardness results showed that the softening of high-purity iron occurred by annealing up to about 900 K, while the hardness of iron added with about 0.5-1.5 mass% copper was kept over 100 Hv and at the early time of annealing reached a maximum. The hardness of iron added with a small amount of copper may be attributed to precipitation hardening as well as solution hardening. The orientation of crystal in recrystallized grain was almost same as that of deformed grain.

A COMPARATIVE STUDY ON THE FLEXURE STRENGTH OF THE CERAMICS FOR ALL-CERAMIC CROWNS (All-ceramic Crown 용 도재의 굽힘강도에 관한 비교연구)

  • Yu Hyoung-Woo;Song Chang-Yong;Bae Tae-Seong;Song Kwang-Yeob;Park Chan-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제32권2호
    • /
    • pp.195-211
    • /
    • 1994
  • The purpose of this study was to evaluate the fracture resistance of the four kinds of dental porcelains for the all-ceramic crown(Vita In-Ceram, Vita Hi-Ceram, IPS-Empress, Vitadur-N) and one kind for the metal-ceramic non(Vita VMK 68) was used as the control group. In order to determine the fracture resistance, the hi-axial flexure strength was measured at a crosshead speed of 0.5mm/min, and the Vickers hadrness was measured at an indentation load of 1kg for 20 seconds. The results obtained were summarized as follows ; 1. The maximum Weibull modulus of 24.61 for Vitadur-N and the minimum one of 852 for IPS-Empress were observed ; the maximum characteristic strength of 353.26MPa for Vita In-Ceram and the minimum that of 63.20MPa for Vitadur-N were also observed. 2. The maximum mean bi-axial flexure strength of 339.12MPa for Vita In-Ceram and thd minimum one of 61.99MPa for Vitadur-N were calculated. Results of the Scheffe test indicated that the statistically significant difference(P<0.05) existed between Vita In-Ceram or Vita Hi-Ceram and the others ; also between IPS-Empress and Vitadur-N. 3. The maximum mean hardness of $980.55kg/mm^2$ for Vita VMK 68 appeared. Results of the Scheffe test indicated that statistically significant difference(P<0.05) existed between Vita In-Ceram or Vita Hi-Ceram and the others ; also between IPS-Empress and Vita VMK 68.

  • PDF