• Title/Summary/Keyword: Maximum Efficiency Point

Search Result 454, Processing Time 0.026 seconds

The Control Characteristics of PV System Using Discrete Data Signal (이산치 신호를 이용한 PV시스템의 제어특성)

  • 김동휘;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.93-96
    • /
    • 1999
  • Solar cell generate DC power from sunlight whose power is different at any instance according to condition of variables : insolation and temperature. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition. In this paper, Boost chopper is controlled it output voltage with a new discrete control algorithm for MPPT. PWM signal of DC-DC converter are generated with a 89C51 microcontroller. Switching frequency of DC-DC converter is set at 10KHz. Simulation and experimental results show that the PV system studied in this paper is always operated at maximum power point under different maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component

  • PDF

The Improved Maximum Power Point Tracking Algorithm under varying of irradiance (일사량 변화를 고려한 개선된 MPPT 알고리즘)

  • Lee, Gwui-Han;Jung, Young-Seok;Lee, Youn-Seop;Cha, Han-Ju;KO, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.17-24
    • /
    • 2015
  • The MPPT(Maximum Power Point Tracking) techniques are employed in photovoltaic (PV) systems to maximize the PV array output power which depends on solar irradiance and temperature. The dynamic MPPT performance under varying irradiance conditions affects the impact on overall PV system performance. This paper presents the improved MPPT algorithm by the simulation comparison with other algorithms. The simulation models are made by the Matlab & Simulink. The result of simulation, the dynamic MPPT efficiency of proposed algorithm is higher than the other algorithms.

A Study on DSP Conrolled Photovoltaic System with Maximum Power Tracking

  • Ahn, Jeong-Joon;Kim, Jae-Mun;Kim, Yuen-Chung;Lee, Joung-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.966-971
    • /
    • 1998
  • The studies on the photovoltaic system are extensively exhaustible and broadly available resourse as a future energy supply. In this paper, a new maximum power point tracker(MPPT) using neural network theory is proposed to improve energy conversion efficiency. The boost converter and neural network controller(NNC) were employed so that the operating point of solar cell was located at the Maximum Power Point. And the back propagation algorithm with one input layer of two inputs(E, CE) and output layer(cnntrol value) was applied to train a neural network. Simulation and experimental results show that the performance of NNC in MPPT of photovoltaic array is better than that of controller based upon the Hill Climbing Method.

  • PDF

A Simple Real-Time DMPPT Algorithm for PV Systems Operating under Mismatch Conditions

  • Aniruddha, Kamath M.;Jayanta, Biswas;Anjana, K.G.;Mukti, Barai
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.826-840
    • /
    • 2018
  • This paper presents a distributed maximum power point tracking (DMPPT) algorithm based on the reference voltage perturbation (RVP) method for the PV modules of a series PV string. The proposed RVP-DMPPT algorithm is developed to accurately track the maximum power point (MPP) for each PV module operating under all atmospheric conditions with a reduced hardware overhead. To study the influence of parameters such as the controller reference voltage ($V_{ref}$) and PV current ($I_{pv}$) on the PV string voltage, a small signal model of a unidirectional differential power processing (DPP) based PV-Bus architecture is developed. The steady state and dynamic performances of the proposed RVP DMPPT algorithm and small signal model of the unidirectional DPP based PV-Bus architecture are demonstrated with simulations and experimental results. The accuracy of the RVP DMPPT algorithm is demonstrated by obtaining a tracking efficiency of 99.4% from the experiment.

Design of a Vibration Energy Harvesting Circuit With MPPT Control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2457-2464
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using a piezoelectric device is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the electric power-voltage characteristic of a piezoelectric device to deliver the maximum power to load. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a full-wave rectifier circuit connected to the piezoelectric device output and delivers the maximum available power to load. The proposed vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. Simulation results show that the maximum power efficiency of the designed circuit is 91%, and the chip area except pads is $700{\mu}m{\times}730{\mu}m$.

Design of Vibration Harvesting Circuit using the MPPT control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yun, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.392-395
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using the piezoelectric element has been designed. MPPT (maximum power point tracking control) control function has been implemented to deliver the maximum power to the load by using the electric power-voltage characteristic of the piezoelectric element. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the full wave rectifier circuit and delivers the maximum available power to the load. The vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. The maximum power efficiency is 91%, and the chip area except pads is $1,100{\mu}m{\times}730{\mu}m$.

  • PDF

Improved Global Maximum Power Point Tracking for Photovoltaic System via Cuckoo Search under Partial Shaded Conditions

  • Shi, Ji-Ying;Xue, Fei;Qin, Zi-Jian;Zhang, Wen;Ling, Le-Tao;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.287-296
    • /
    • 2016
  • Conventional maximum power point tracking (MPPT) methods are ineffective under partially shaded conditions because multiple local maximum can be exhibited on power-voltage characteristic curve. This study proposes an improved cuckoo search (ICS) MPPT method after investigating the cuckoo search (CS) algorithm applied in solving multiple MPPT. The algorithm eliminates the random step in the original CS algorithm, and the conception of low-power, high-power, normal and marked zones are introduced. The adaptive step adjustment is also realized according to the different stages of the nest position. This algorithm adopts the large step in low-power and marked zones to reduce search time, and a small step in high-power zone is used to improve search accuracy. Finally, simulation and experiment results indicate that the promoted ICS algorithm can immediately and accurately track the global maximum under partially shaded conditions, and the array output efficiency can be improved.

Optimum Control Period and Perturbation Voltage for PV-MPPT Controller Considering Real Wether Condition (실제 날씨를 고려한 PV-MPPT 제어기의 최적 주기와 변량전압)

  • Ryu, Danbi;Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Solar power generation systems require maximum power point tracking (MPPT) control to operate PV panels at their maximum power point (MPP). Most conventional MPPT algorithms are based on the slope-tracking concept. A typical slope-tracking method is the perturb and observe (P&O) algorithm. The P&O algorithm measures the current and voltage of a PV panel to find the operating point of the voltage at which the calculated power is maximized. However, the measurement error of the sensor causes irregularity in the calculation of the generated power and voltage control. This irregularity leads to the problem of not finding the correct MPP operating point. In this work, the power output of a PV panel based on the P&O algorithm is simulated by considering the insolation profiles from typical clear and cloudy weather conditions and the errors of current and voltage sensors. Simulation analysis suggests the optimal control period and perturbation voltage of MPPT to maximize its target efficiency under real weather conditions with sensor tolerance.

A Suggestion of New MPPT Algorithm in the PV system (태양광 시스템에서의 새로운 MPPT 알고리즘 제안)

  • Lee Kyungsoo;Jung Youngseok;So Junghun;Yu Gwonjong;Choi Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • As the maximum power operating point(MPOP) of the Photovoltaic(PV) power systems alters with changing atmospheric conditions, the efficiency of maximum power point tracking(MPPT) is important in PV power systems. Many MPPT techniques have been considered in the past, but techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. In this paper, the author analyzes and studies two MPPT algorithms, which is named P&O(Perturbation and Observation) and IncCond(Incremental Conductance). Also, the author proposes Hysterisis-band alteration algorithm. To show the excellency of new Hysterisis-band alteration, the author suggests three references; 1) Comparing three MPPT algorithms in the steady-state condition, 2) Representing irradiation variation rapidly, 3) Showing MPPT efficiency. MPPT simulation and experiment perform in the boost converter.

Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors

  • Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1629-1638
    • /
    • 2016
  • Differential power processing (DPP) systems are among the most effective architectures for photovoltaic (PV) power systems because they are highly efficient as a result of their distributed local maximum power point tracking ability, which allows the fractional processing of the total generated power. However, DPP systems require a high-efficiency, high step-up/down bidirectional converter with broad operating ranges and galvanic isolation. This study proposes a single, magnetic, high-efficiency, high step-up/down bidirectional DC-DC converter. The proposed converter is composed of a bidirectional flyback and a bidirectional isolated switched-capacitor cell, which are competitively cheap. The output terminals of the flyback converter and switched-capacitor cell are connected in series to obtain the voltage step-up. In the reverse power flow, the converter reciprocally operates with high efficiency across a broad operating range because it uses hard switching instead of soft switching. The proposed topology achieves a genuine on-off interleaved energy transfer at the transformer core and windings, thus providing an excellent utilization ratio. The dynamic characteristics of the converter are analyzed for the controller design. Finally, a 240 W hardware prototype is constructed to demonstrate the operation of the bidirectional converter under a current feedback control loop. To improve the efficiency of a PV system, the maximum power point tracking method is applied to the proposed converter.