• Title/Summary/Keyword: Maximum Efficiency Control

Search Result 779, Processing Time 0.027 seconds

The MPPT Control Method of the PMSG Wind Generation System using the Turbine Model with a Squirrel Cage Induction Motor (농형 유도기 터빈 모델을 이용해 구현한 영구자석 동기기 풍력발전 시스템의 MPPT 제어)

  • Lee, Joon-Min;Kim, Dong-Hwa;Shin, Hye-Su;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This paper presents the MPPT(Maximum Power Point Tracking)control method of the PMSG wind generation system using the turbine model with a squirrel cage induction motor. The torque of squirrel cage induction turbine model is controlled by mathematization of speed characteristics of real blade. In this paper, maintenance and cost issues into consideration, except for previous method using information of the velocity of the wind speed sensor, the algorithm is presented. The algorithm is controlled by tracking the optimal point, the generator speed and maximum grid power. The vector controls of the generator side converter and the grid side converter are controlled respectively to obtain maximum torque and regulate unity power factor. With Psim simulations and experiments, the efficiency of squirrel cage induction turbine model and the validity of control algorithm are verified.

Maximum Output Power Control for PV Generation System basedon Fuzzy Logic Algorithm

  • Abo-Khalil Ahmed G.;Lee Dong-Choon;Seok Jul-Ki;Choi Jong-Woo;Kim Heung-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.69-72
    • /
    • 2003
  • The paper presents implementation of a PV fuzzy logic power tracking controller. Using maximum power point tracker with the intermediate converter can increase the system efficiency by matching the PV system to the load. A new fuzzy MPPT is proposed, where fuzzy inputs parameters are dp/dI and the last incremental of duty of duty ratio $L{\delta}D$, and the output is the new incremental value $(new{\delta}D)$ according to the maximum power point under various illumination levels.

  • PDF

Application of Neural Network Control Algorithm and Maximum Power Tracking of Sun Photocell using Sunlight Sensor (태앙광 센서에 의한 태앙광 전지의 최대전력추적과 신경회로망 제어알고리즘 적용)

  • Yoo, Seok-Ju;Lee, Seong-Su;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.33-38
    • /
    • 2010
  • Recently, photovoltaic generator system is widely extended by energy policy of the government. Add to this, high efficiency of photocell power generation is steady needed to sun tracking method. However sun tracking method is not widely extended by insufficiency of tracking technology. As method of solving this problem, this paper applied sunlight sensor and neural network control algorithm for maximum power tracking of sun photocell. Sun tracking sensor consists of one upright square pole and form light sensor of east, west, south, north on flat board. Sun tracking dual axes control is operated respectively by two motor. Motor control input is calculated by neural network control algorithm. The function of proposed control method is verified by sun tracking experiment of photocell generation. The sun tracking method of this paper is increased 32[%] efficiency more than fixed method.

Study for Reducing Ripples of the PV Array Output in Grid-Connected Photovoltaic Power System (계통연계헝 태양광인버터의 PV Array 출력리플 저감을 위한 연구)

  • Kim, Hee-Jung;Chung, Yong-Ho;Lee, Ki-Su;Jon, Young-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.202-205
    • /
    • 2006
  • In the PV power system, output of the PV array must contain inherent ripples due to the single-phase inverter. So the function of maximum power point tracking to increase the output efficiency of PV system is degraded. Therefore, to overcome this problem, this paper presents a control strategy for the reducing ripples of the PV array output in grid-connected photovoltaic power system. The proposed control system consists of two loops the maximum power point tracking loop using the perturbation and observation method is used to calculate the reference solar array terminal voltage(Vref) for reducing ripples of the PV array output and the PI control loop is used to regulate the solar array output voltage according to the Vref. The performance of proposing control strategy is analyzed by means of the PSCAD/EMTDC simulation. As a result, we may obtain the high performance of the proposed control strategy.

  • PDF

Minimum Energy Control of an S-CVT Equipped Power Transmission

  • Kim, Jungyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.82-91
    • /
    • 2004
  • This article deals with a minimum energy control law of S-CVT connected to a dc motor. The S-CVT can smoothly transit between the forward, neutral, and reverse states without any brakes or clutches, and its compact and simple design and its relatively simple control make it particularly effective for mechanical systems in which excessively large torques are not required. And such an S-CVT equipped power transmission has the advantage of being able to operate the power sources in their regions of maximum efficiency, thereby improving the energy efficiency of the transmission system. The S-CVT was intended to primarily for use in small power capacity transmissions, thus a dc motor was considered here as the power source. We first review the structure and operating principles of the S-CVT, including experimental results of its performance. And then we describe a minimum energy control law of S-CVT connected to a do motor. To do this, we describe the results of an analysis of the dynamics of an S-CVT equipped power transmission and the power efficiency of a DC motor. The minimum energy control design is carried out via B-spline parameterization. And we show numerical results obtained from simulations illustrate the validity of our minimum energy control design, benchmarked with a computed torque control algorithm for S-CVT.

Comparative Study of Maximum Power Point Tracking Algorithms Using PV Array Simulator (태양전지 모의 전원을 이용한 MPPT 알고리즘의 비교 고찰)

  • Jung Youngseok;So Junghun;Yu Gwonjong;Choi Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.234-237
    • /
    • 2003
  • As the maximum power operating point (MPOP) of photovoltaic (PV) power systems changes with changing atmospheric conditions, the efficiency of maximum power point tracking (MPPT) is important in PV power systems. Many MPPT techniques have been considered in the past, but techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. In this paper, we proposed a new MPPT control method called improved perturb and observe method (ImP&O), anda simple voltage and current characteristic equation of a PV array for PV array simulator. Experimental results verify the accuracy and excellent performance of the proposed MPPT method. ImP&O algorithm is very simple, and has successful tracked the MPOP, even in case of rapidly changing atmospheric conditions.

  • PDF

Performance Analysis of MPPT Techniques Based on Fuzzy Logic and P&O Algorithm in Actual Weather Environment (실제 날씨 환경에서 퍼지로직과 P&O 제어방식의 MPPT 동작 성능 분석)

  • Eom, Hyun-Sang;Yang, Hye-Ji;An, Hyun-Jun;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.291-298
    • /
    • 2020
  • The power generation of a PV system changes according to the weather variables, such as solar radiation and temperature. In particular, the output characteristics of photovoltaic systems, which are sensitive to changes in solar radiation, can be produced effectively and reliably in various weather conditions through MPPT (Maximum Power Point Tracking) control. This paper proposes a fuzzy-based MPPT control method to improve the efficiency and stability of the power production from a solar system. To verify the performance of the proposed method, under the same weather environment, the efficiency and stability of the newly proposed fuzzy logic were compared and evaluated empirically with P&O (Perturb and Observe), a representative algorithm of MPPT control. Furthermore, the circuits designed to improve the reliability and reliability of the hardware were manufactured from Printed Circuit Boards (PCB) to conduct experiments. Based on the results of the experiment during a certain period, the fuzzy-based MPPT proposed in this paper improved the efficiency by more than 4.4% compared to the MPPT based on the existing P&O algorithm and decreased the fluctuation width by more than 39.7% at the maximum power point.

Maximum Boost Discrete PWM method of Z-Source Inverters (Z-소스 인버터의 최대승압 불연속 PWM 방법)

  • Kim, Seonghwan;Park, Janghyun;park, Taesik
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.166-169
    • /
    • 2017
  • In this paper, maximum boost discrete PWM(DPWM) method of Z-Source Inverter(ZSI) is proposed. In general, a DPWM method is used to reduce the switching losses of the inverters and increase the efficiencies. The maximum boost PWM method of Z-Source Inverters is combined with the DPWM method. The proposed Maximum boost DPWM of ZSI is analyzed and it shows how to reduce the switching losses of ZSI. An experimental system has been built and tested to verify the effectiveness of the proposed method.

Unbounded Binary Search Method for Fast-tracking Maximum Power Point of Photovoltaic Modules

  • Hong, Yohan;Kim, Yong Sin;Baek, Kwang-Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.454-461
    • /
    • 2016
  • A maximum power point tracking (MPPT) system with fast-tracked time and high power efficiency is presented in this paper. The proposed MPPT system uses an unbounded binary search (UBS) algorithm that continuously tracks the maximum power point (MPP) with a binary system to follow the MPP under rapid-weather-change conditions. The proposed algorithm can decide the correct direction of the MPPT system while comparing the previous power point with the present power point. And then, by fixing the MPP until finding the next MPP, there is no oscillation of voltage MPP, which maximizes the overall power efficiency of the photovoltaic module. With these advantages, this proposed UBS is able to detect the MPP more effectively. This MPPT system is based on a boost converter with a micro-control unit to control analog-to-digital converters and pulse width modulation. Analysis of this work and experimental results show that the proposed UBS MPPT provides fast, accurate tracking with no oscillation in situations where weather rapidly changes and shadow is caused by all sorts of things. The tracking time is reduced by 87.3% and 66.1% under dynamic-state and steady-state operation, respectively, as compared with the conventional 7-bit perturb and observe technique.

Recent Progress Trend in Motor and Inverter for Hybrid Vehicle (하이브리드 자동차용 모터 및 인버터 최신 동향 분석)

  • Kim, Sung-Jin;Hong, Sueng-Min;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.381-387
    • /
    • 2016
  • Many efforts have focused on the improvement of power density and efficiency by downsizing the motor and inverter. Recently, Toyota, Honda, and GM realized that the compact-sized motor uses the hairpin structure with increased space factor. Reducing the maximum torque from high-speed technique also makes it possible to design the high-power density model. Toyota and Honda used the newly developed power semiconductor IGBT to decrease conduction loss for high-efficiency inverter. In particular, Toyota used the boost converter to increase the DC link voltage for high efficiency in low-torque high-speed region. Toyota and GM also used the double-sided cooling structure for miniaturization of inverter for high-power density.