• 제목/요약/키워드: Maximum Cutting Speed

검색결과 74건 처리시간 0.024초

박막 절단용 PZT 구동 미세깊이 조절 장치의 특성 (Characteristics of a PZT-Driven Micro Depth Adjustment Device for Cutting Coated Film)

  • 류상오;김화영;안중환
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.630-635
    • /
    • 2014
  • This study aims to develop a PZT-driven depth adjustment device with a flexure hinge and to investigate its static/dynamic characteristics. This device will be applied to rapidly and accurately trace a flat surface with slight waviness of up to several hundreds of micrometers in magnitude. One typical example is to cut a film coated on a steel plate. A depth control system composed of PMAC, PZT/PZT amplifier, flexure hinge/knife, and laser displacement sensor is implemented on a desktop three-axis machine and an actual cutting test is conducted on a steel workpiece with a sinusoidal-wavy surface. It is verified that the dynamic characteristics of the device limit the maximum cutting speed and depth precision.

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.

와이어 방전 가공 시 발생되는 열응력 분포에 관한 유한요소법적 고찰 (A study on the Thermal Stress Distribution for Wire Electrical Discharge by Finite Element Method)

  • 반재삼;김승욱;김선진;조규재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2002
  • The Purpose of this study is to know temperature and thermal stress distribution in specimens during processing of WEDM. If it is constant to the cutting speed and the thickness of material, it is very important to the effect of temperature and the thermal stress distribution after cutting processing. This paper show the analysis result of the distribution of temperature and the residual stress along the direction of thickness before processing of WEDM and after when the cooling temperature is$20^{\circ}C$. The maximum temperature of edge of specimens is $1600^{\circ}C$. It has little temperature gradient in the depth which is 5mm away from edge of specimens. Equivalent residual stress is result in 180.7 MPa at maximum temperature.

  • PDF

마늘 주아 수확기 개발을 위한 마늘종의 역학적 특성 분석 (Mechanical Characteristics of Garlic Scapes for Developing Mechanical Garlic Bulbils Harvester)

  • 서정덕;김건회;권순홍
    • Journal of Biosystems Engineering
    • /
    • 제30권2호
    • /
    • pp.75-80
    • /
    • 2005
  • Mechanical characteristics of flower stalks (scapes) of garlic such as shear forces, cutting forces, and modulus of elasticities were investigated as a preliminary research to develop a mechanical harvester of garlic bulbils. The average shear forces of garlic scapes was 0.642 N and the maximum and minimum shear forces were 1.42 and 0.25 N, respectively. The shear forces generally increased as the diameter of garlic scapes increased. There was no correlation between the modulus of elasticity and the diameter of garlic scapes and the average modulus of elasticity of garlic scapes was around $2.40\times10^7\;N/m^2$ There was also no correlation between the cutting force and the diameter of garlic scapes. As the downward speed of blade increased, the cutting force of garlic scapes decreased and reversed to increase. The cutting forces of the lower part garlic scapes were lower than those of the upper part. The range of cutting forces of the lower and the upper part of garlic scapes were 3.88-4.04 N and 4.29-4.93 N, respectively.

Rigid 탭핑에서의 Z축과 주축간 동기오차의 거동 (Action of Synchronous error between Z axis and spindle axis on rigid tapping)

  • 이돈진;강지웅;김용규;김선호;김화영;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.184-187
    • /
    • 2000
  • This paper describes action of synchronous error between z axis and spindle axis on rigid tapping. Because rigid tapping cuts the threads synchronizing the movement of z axis to spindle rotation, synchronous error between z axis and spindle is very important. Increase of synchronous error degrades the accuracy of thread and crushes the tap in worst case. So we developed the realtime measurement system of synchronous error in order to know the action of synchronous error on rigid tapping. In result, we have known that synchronous error was increased according to rise of spindle speed and z axis speed. And because the cutting torque(M3-30Ncm∼M10-300Ncm) on rigid tapping are less than maximum motor torque(3500Ncm), it specially doesn't affect the synchronous error. The most important parameter which has affected the increase of synchronous error was acceleration/deceleration time. On worst case, spindle motor was tripped because of the excess of synchronous error. Because the acceleration/deceleration time ocuupies the most of the total cutting time, in order to move on the high speed rigid tapping, the acceleration/deceleration time of spindle must be remarkably reduced.

  • PDF

경화처리된 합금공구강의 절삭에서 가공 표면층의 표면성상에 관한 연구 (A study on the surface integrity of machined surface layer in machining hardened STD11 steel)

  • 노상래;안상욱
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.153-160
    • /
    • 1994
  • In this study, residual stress and surface roughness were investigated experimentally to evaluate surface integrity on surface layer machined by CBN, ceramics and WC cutting tools. When machining difficult-to-cut material (hardened STD11 steel $H_{R}$C 60), residual stresses remaining in machined surface layer were mainly compressive. The increase of flank wear caused a shift of the compressive residual stress maximum to greater workpiece depths, but the changes did not penetrate the workpiece beneath a depth of 300 .mu. m. Surface roughness was influenced considerably by variations of the cutting speed and feed. In machining hard material, CBN and A1$_{2}$ $O_{3}$ ceramics cutting tool materials proved significantly superior to mixed ceramics A1$_{2}$ $O_{3}$-TiC and WC in evaluation of surface integrity.y.

  • PDF

고속 회전형 공구헤드의 설계 및 성능시험 (Design and Performance Test of High-speed Swivel Tool Head)

  • 김인환;구자함;허남수
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.57-63
    • /
    • 2014
  • At present, a high-speed swivel tool head of a small size is required to improve the productivity of CNC automatic lathes. Hence, there is growing interest in shorter machining times with higher cutting speeds. However, an increase in the rotation speed of a swivel tool head also has adverse effects, such as vibration and noise caused by the swivel tool head system. In this work, the fatigue life and contact pressure of a swivel tool head bearing system driven by gears were calculated. Based on the calculated results, a prototype swivel tool head was manufactured and its static and dynamic characteristics, i.e., the vibration, noise and precision, were measured using a reliability testing device which allows the application of cutting force to the end of the swivel tool head.

Al-Li 합금 가공용 MQL 초경공구의 최적 형상에 관한 연구 (A Study on the Optimum Shape of MQL Carbide End-mill for Machining of Aluminum Lithium Alloy)

  • 이인수;김해지
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.159-166
    • /
    • 2013
  • In order to develop the optimum shape of an MQL carbide end-mill suitable for high speed machining of wing ribs which are a detailed part of larger wing structures, using a new material Al-Li alloy, a new MQL carbide end-mill is created that has various quantities of holes, hole sizes, and hole locations. A theoretical machining graph is generated using the hammer test and FRF simulation, and a machining test is performed in order to verify the machining stability in the high speed machining area. The optimum configuration of the MQL carbide end-mill is also presented through comparing the chattering, machining noise and cutting conditions, including the maximum cutting depth, rpm, and feed rate per teeth, for each cutter.

식빵의 굳기 측정을 위한 측정 조건에 관한 연구 (A study on the measurement conditions for measuring the toughness of bread)

  • 신선화;최원석
    • 한국식품과학회지
    • /
    • 제54권2호
    • /
    • pp.247-250
    • /
    • 2022
  • 노화 등으로 인한 식빵의 굳기(toughness) 정도를 측정하고자 Miller/Hoseney Toughness 장치를 이용하여 여러 측정조건(이동속도 및 침투율 변화)에서 절단력 최대값을 측정하여 분석하였다. 식빵 겉껍질에서는 이동속도가 증가함에 따라 절단력 최대값이 유의적으로 증가하였으며, 시료들 사이에서의 유의차는 일부 측정조건에서 다르게 나타났다. 식빵 내부에서의 측정값은 동일 침투율에서는 이동속도가 증가함에 따라 대부분의 시료에서 절단력 최대값이 유의적으로 증가하였으며, 시료들 사이에서의 유의차는 침투율에 상관없이 이동속도가 달라져도 변화하지 않았다. 결론적으로 본 실험 방법으로 식빵 내부의 굳기를 측정할 경우 측정조건변화에 의해 절단력 최대값은 달라지나, 시료간 유의차는 변화하지 않아, 시료간 유의차를 판단하는 경우 본 실험 범위내에서 매우 편리하고 신뢰도가 높은 실험으로 사료된다.

리니어모터 이송 유연성 연삭가공 시스템에 관한 연구 (A study on the linear motor feed flexible disk grinding system)

  • 유송민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.381-386
    • /
    • 2004
  • A flexible disk grinding system process has been introduced that utilized varying disk orientation with respect to workpiece along with the applied feed speed. A known process model methodologies has been used to fomulate processed surface profiles. Various process conditions including cutting speed, maximum feed speed and orientation angles could applied to observe process outcomes. Even though continuous and constant feed speed has been applied to the process, the results from the trapezoidal input velocity profiles would be observed and compared. Based on the control strategies including neural network methodologies, several output results were compared to find the optimum process condition.

  • PDF