• 제목/요약/키워드: Maximizing throughput

검색결과 109건 처리시간 0.031초

WDM 멀티링에서 전송효율을 최대화하기 위한 트래픽 그루밍 알고리즘 (Traffic Grooming Algorithm for Maximizing Throughput in WDM Multi-Ring Networks)

  • 윤승진;임철수
    • 전기전자학회논문지
    • /
    • 제15권2호
    • /
    • pp.157-163
    • /
    • 2011
  • 본 논문에서는 WDM 기법을 이용한 멀티링 네트워크 환경에서 트래픽 전송효율을 최대화하기 위한 트래픽 그루밍 알고리즘을 제안하였다. 이를 위하여 멀티링 네트워크를 독립적, 분리적, 혼합적, 부분혼합적 구조로 나누어서 설명하였고 균등 트래픽 환경에서 성능을 평가하였다. 이를 통해 WDM 멀티링 네트워크 구조에서 트래픽 전송효율을 최대화할 수 있는 트래픽 그루밍 알고리즘을 제시하였다.

Throughput Maximization for Cognitive Radio Users with Energy Constraints in an Underlay Paradigm

  • Vu, Van-Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • 제15권2호
    • /
    • pp.79-84
    • /
    • 2017
  • In a cognitive radio network (CRN), cognitive radio users (CUs) should be powered by a small battery for their operations. The operations of the CU often include spectrum sensing and data transmission. The spectrum sensing process may help the CU avoid a collision with the primary user (PU) and may save the energy that is wasted in transmitting data when the PU is present. However, in a time-slotted manner, the sensing process consumes energy and reduces the time for transmitting data, which degrades the achieved throughput of the CRN. Subsequently, the sensing process does not always offer an advantage in regards to throughput to the CRN. In this paper, we propose a scheme to find an optimal policy (i.e., perform spectrum sensing before transmitting data or transmit data without the sensing process) for maximizing the achieved throughput of the CRN. In the proposed scheme, the data collection period is considered as the main factor effecting on the optimal policy. Simulation results show the advantages of the optimal policy.

MOPSO-based Data Scheduling Scheme for P2P Streaming Systems

  • Liu, Pingshan;Fan, Yaqing;Xiong, Xiaoyi;Wen, Yimin;Lu, Dianjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5013-5034
    • /
    • 2019
  • In the Peer-to-Peer (P2P) streaming systems, peers randomly form a network overlay to share video resources with a data scheduling scheme. A data scheduling scheme can have a great impact on system performance, which should achieve two optimal objectives at the same time ideally. The two optimization objectives are to improve the perceived video quality and maximize the network throughput, respectively. Maximizing network throughput means improving the utilization of peer's upload bandwidth. However, maximizing network throughput will result in a reduction in the perceived video quality, and vice versa. Therefore, to achieve the above two objects simultaneously, we proposed a new data scheduling scheme based on multi-objective particle swarm optimization data scheduling scheme, called MOPSO-DS scheme. To design the MOPSO-DS scheme, we first formulated the data scheduling optimization problem as a multi-objective optimization problem. Then, a multi-objective particle swarm optimization algorithm is proposed by encoding the neighbors of peers as the position vector of the particles. Through extensive simulations, we demonstrated the MOPSO-DS scheme could improve the system performance effectively.

Interference Aware Channel Assignment Algorithm for D2D Multicast Underlying Cellular Networks

  • Zhao, Liqun;Ren, Lingmei;Li, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2648-2665
    • /
    • 2022
  • Device-to-device (D2D) multicast has become a promising technology to provide specific services within a small geographical region with a high data rate, low delay and low energy consumption. However, D2D multicast communications are allowed to reuse the same channels with cellular uplinks and result in mutual interference in a cell. In this paper, an intelligent channel assignment algorithm is designed in D2D underlaid cellular networks with the target of maximizing network throughput. We first model the channel assignment problem to be a throughput maximizing problem which is NP-hard. To solve the problem in a feasible way, a novel channel assignment algorithm is proposed. The key idea is to find the appropriate cellular communications and D2D multicast groups to share a channel without causing critical interference, i.e., finding a channel for a D2D multicast group which generates the least interference to network based on current channel assignment status. In order to show the efficacy and effectiveness of our proposed algorithm, a novel search algorithm is proposed to find the near-optimal solution as the baseline for comparisons. Simulation results show that the proposed algorithm improves the network throughput.

CIM 공장의 운용 통제 전문가 시스템 (An expert system for controlling CIM operation)

  • 김성식;이태진;김재만
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.801-805
    • /
    • 1992
  • Due to the inherent complexity in the CIM operation, achieving the triple, meeting duedates, maximizing machine utilization, and maximizing system throughput simultaneously is practically impossible. Targeting the small-to-medium size industries of Korea, we propose an exrert system that 'provides a good and practical solution to the CIM operation problems. Heavy consideration has given to the real-time and dynamic nature of CIM in the development process of the system. The system is under testing stage at KU-FMS, model CIM plant.

  • PDF

Optimal Sensing Time for Maximizing the Throughput of Cognitive Radio Using Superposition Cooperative Spectrum Sensing

  • Vu-Van, Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • 제13권4호
    • /
    • pp.221-227
    • /
    • 2015
  • Spectrum sensing plays an essential role in a cognitive radio network, which enables opportunistic access to an underutilized licensed spectrum. In conventional cooperative spectrum sensing (CSS), all cognitive users (CUs) in the network spend the same amount of time on spectrum sensing and waste time in remaining silent when other CUs report their sensing results to the fusion center. This problem is solved by the superposition cooperative spectrum sensing (SPCSS) scheme, where the sensing time of a CU is extended to the reporting time of the other CUs. Subsequently, SPCSS assigns the CUs different sensing times and thus affects both the sensing performance and the throughput of the system. In this paper, we propose an algorithm to determine the optimal sensing time of each CU for SPCSS that maximizes the achieved system throughput. The simulation results prove that the proposed scheme can significantly improve the throughput of the cognitive radio network compared with the conventional CSS.

계산이 효율적인 전송률-형평성 트레이드오프 제어 스케줄링 알고리즘 (A Computationally Efficient Scheduling Algorithm Capable of Controlling Throughput-Fairness Tradeoff)

  • 이민;오성근
    • 한국통신학회논문지
    • /
    • 제35권2A호
    • /
    • pp.121-127
    • /
    • 2010
  • 이 논문에서는 다중 사용자 무선통신 환경에서 전송률-형평성 트레이드오프를 임의로 제어할 수 있는 계산이 효율적인 전송률-형평성 제어 스케줄링 알고리즘을 제안한다. 제안되는 스케줄링 기준은 최대의 전송률 합을 추구하는 스케줄링 기준과 최대의 형평성을 추구하는 스케줄링 기준을 제어 인자에 따라 전송률과 형평성을 조정할 수 있도록 선형적으로 결합한다. 이때, 선형 결합을 통한 전송률-형평성 트레이드오프 제어를 위하여 스케줄링 기준의 단위와 최적화 방향을 일치시키는 것이 필요하다. 제안된 알고리즘은 이러한 조건들을 만족시키기 위하여 순시 전송률과 평균 제공 전송률을 스케줄링 기준으로 결정하고, 이들을 제어 인자를 사용하여 최적화 방향이 일치하도록 선형적으로 결합하여 제어 인자 값에 따라 다양한 전송률형평성 성능을 제공할 수 있도록 한다. 추가적인 계산 간소화를 위하여 순시 전송률에 대한 높은 SNR (signal-to-noise ratio) 근사화 관계를 이용한다. 모의 실험을 통하여 독립적인 레일리 페이딩 다중 사용자 채널에서 제안된 스케줄링 알고리즘에 대하여 제어 인자 값에 따른 전송률과 형평성 성능을 분석하였고, 순시 전송률의 높은 SNR 근사화 관계를 이용한 성능 분석도 이루어졌다. 모의실험 결과, 제안된 스케줄링 알고리즘은 최대 전송률을 추구하는 스케줄링과 최대 형평성을 추구하는 스케줄링 사이에서 전송률-형평성 성능을 임의로 조절할 수 있음을 확인할 수 있었고, 근사화 결과도 만족스러운 결과를 얻을 수 있었다.

Finite-Horizon Online Transmission Scheduling on an Energy Harvesting Communication Link with a Discrete Set of Rates

  • Bacinoglu, Baran Tan;Uysal-Biyikoglu, Elif
    • Journal of Communications and Networks
    • /
    • 제16권3호
    • /
    • pp.293-300
    • /
    • 2014
  • As energy harvesting communication systems emerge, there is a need for transmission schemes that dynamically adapt to the energy harvesting process. In this paper, after exhibiting a finite-horizon online throughput-maximizing scheduling problem formulation and the structure of its optimal solution within a dynamic programming formulation, a low complexity online scheduling policy is proposed. The policy exploits the existence of thresholds for choosing rate and power levels as a function of stored energy, harvest state and time until the end of the horizon. The policy, which is based on computing an expected threshold, performs close to optimal on a wide range of example energy harvest patterns. Moreover, it achieves higher throughput values for a given delay, than throughput-optimal online policies developed based on infinite-horizon formulations in recent literature. The solution is extended to include ergodic time-varying (fading) channels, and a corresponding low complexity policy is proposed and evaluated for this case as well.

Optimal Bandwidth Assignment for Packet Rings

  • Hua, Cunqing;Yum, Tak-Shing Peter;Li, Cheng
    • Journal of Communications and Networks
    • /
    • 제9권4호
    • /
    • pp.402-407
    • /
    • 2007
  • The network throughput is an important performance criteria for the packet ring networks. Since maximizing the network throughput can lead to severe bias in bandwidth allocation among all flows, fairness should be imposed to prevent bandwidth starvation. The challenge here, therefore, is the joint optimization of the network throughput and fairness. In this paper, we present the optimal bandwidth assignment scheme to decompose this optimization problem into two tasks, one for finding fair bandwidth assignment and the other for finding the optimal routing. The network throughput is maximized under the fairness constraints when these tasks are performed iteratively.