• Title/Summary/Keyword: Maximal Frequent Itemsets

Search Result 5, Processing Time 0.022 seconds

Efficient Mining of Frequent Itemsets in a Sparse Data Set (희소 데이터 집합에서 효율적인 빈발 항목집합 탐사 기법)

  • Park In-Chang;Chang Joong-Hyuk;Lee Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.12D no.6 s.102
    • /
    • pp.817-828
    • /
    • 2005
  • The main research problems in a mining frequent itemsets are reducing memory usage and processing time of the mining process, and most of the previous algorithms for finding frequent itemsets are based on an Apriori-property, and they are multi-scan algorithms. Moreover, their processing time are greatly increased as the length of a maximal frequent itemset. To overcome this drawback, another approaches had been actively proposed in previous researches to reduce the processing time. However, they are not efficient on a sparse .data set This paper proposed an efficient mining algorithm for finding frequent itemsets. A novel tree structure, called an $L_2$-tree, was proposed int, and an efficient mining algorithm of frequent itemsets using $L_2$-tree, called an $L_2$-traverse algorithm was also proposed. An $L_2$-tree is constructed from $L_2$, i.e., a set of frequent itemsets of size 2, and an $L_2$-traverse algorithm can find its mining result in a short time by traversing the $L_2$-tree once. To reduce the processing more, this paper also proposed an optimized algorithm $C_3$-traverse, which removes previously an itemset in $L_2$ not to be a frequent itemsets of size 3. Through various experiments, it was verified that the proposed algorithms were efficient in a sparse data set.

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF

Implementation of Subsequence Mapping Method for Sequential Pattern Mining

  • Trang Nguyen Thu;Lee Bum-Ju;Lee Heon-Gyu;Park Jeong-Seok;Ryu Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.457-462
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

Mining Association Rules in Multidimensional Stream Data (다차원 스트림 데이터의 연관 규칙 탐사 기법)

  • Kim, Dae-In;Park, Joon;Kim, Hong-Ki;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.765-774
    • /
    • 2006
  • An association rule discovery, a technique to analyze the stored data in databases to discover potential information, has been a popular topic in stream data system. Most of the previous researches are concerned to single stream data. However, this approach may ignore in mining to multidimensional stream data. In this paper, we study the techniques discovering the association rules to multidimensional stream data. And we propose a AR-MS method reflecting the characteristics of stream data since make the summarization information by one data scan and discovering the association rules for significant rare data that appear infrequently in the database but are highly associated with specific event. Also, AR-MS method can discover the maximal frequent item of multidimensional stream data by using the summarization information. Through analysis and experiments, we show that AR-MS method is superior to other previous methods.

Performance Evaluation of the FP-tree and the DHP Algorithms for Association Rule Mining (FP-tree와 DHP 연관 규칙 탐사 알고리즘의 실험적 성능 비교)

  • Lee, Hyung-Bong;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.199-207
    • /
    • 2008
  • The FP-tree(Frequency Pattern Tree) mining association rules algorithm was proposed to improve mining performance by reducing DB scan overhead dramatically, and it is recognized that the performance of it is better than that of any other algorithms based on different approaches. But the FP-tree algorithm needs a few more memory because it has to store all transactions including frequent itemsets of the DB. This paper implements a FP-tree algorithm on a general purpose UNK system and compares it with the DHP(Direct Hashing and Pruning) algorithm which uses hash tree and direct hash table from the point of memory usage and execution time. The results show surprisingly that the FP-tree algorithm is poor than the DHP algorithm in some cases even if the system memory is sufficient for the FP-tree. The characteristics of the test data are as follows. The site of DB is look, the number of total items is $1K{\sim}7K$, avenrage length of transactions is $5{\sim}10$, avergage size of maximal frequent itemsets is $2{\sim}12$(these are typical attributes of data for large-scale convenience stores).