• Title/Summary/Keyword: Maxillary six anterior teeth retraction

Search Result 5, Processing Time 0.024 seconds

Effects of bracket slot size during en-masse retraction of the six maxillary anterior teeth using an induction-heating typodont simulation system

  • Kim, Ji-Yong;Yu, Won-Jae;Koteswaracc, Prasad N.K.;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2017
  • Objective: To investigate how bracket slot size affects the direction of maxillary anterior tooth movement when en-masse retraction is performed in sliding mechanics using an induction-heating typodont simulation system. Methods: An induction-heating typodont simulation system was designed based on the Calorific Machine system. The typodont included metal anterior and resin posterior teeth embedded in a sticky wax arch. Three bracket slot groups (0.018, 0.020, and 0.022 inch [in]) were tested. A retraction force of 250 g was applied in the posterior-superior direction. Results: In the anteroposterior direction, the cusp tip of the canine in the 0.020-in slot group moved more distally than in the 0.018-in slot group. In the vertical direction, all six anterior teeth were intruded in the 0.018-in slot group and extruded in the 0.020- and 0.022-in slot groups. The lateral incisor was significantly extruded in the 0.020- and 0.022-in slot groups. Significant differences in the crown linguoversion were found between the 0.018- and 0.020-in slot groups and 0.018- and 0.022-in slot groups for the central incisor and between the 0.018- and 0.022-in slot groups and 0.020- and 0.022-in slot groups for the canine. In the 0.018-in slot group, all anterior teeth showed crown mesial angulation. Significant differences were found between the 0.018- and 0.022-in slot groups for the lateral incisor and between the 0.018- and 0.020-in slot groups and 0.018- and 0.022-in slot groups for the canine. Conclusions: Use of 0.018-in slot brackets was effective for preventing extrusion and crown linguoversion of anterior teeth in sliding mechanics.

EXPERIMENTAL STUDY OF THE VERTICAL LOCATION OF THE CENTERS OF RESISTANCE FOR MAXILLARY ANTERIOR TEETH DURING RETRACTION USING THE LASER REFLECTION TECHNIQUE (Laser 반사측정법을 이용한 상악전치부의 후방견인시 저항중심의 수직적 위치에 관한 실험적 연구)

  • Woo, Jae-Young;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.23 no.3 s.42
    • /
    • pp.375-389
    • /
    • 1993
  • The delivery of optimal orthodontic treatment is greatly influenced by a clinician's ability to predict and control tooth movement achieved by applying known force systems to the dentition. It is important to determine the location of the center of resistance of a tooth or group of teeth to better understand the nature of their displacement characteristics under the various force levels. The purpose of this study was to define the location of the centers of resistance of various units of the upper anterior segment for lingually directed 100gm and 200gm force in a dry human skull. The units investigated were composed of four incisors and six anterior teeth. In addition, the effect of change in force magnitude on the location of the center of resistance of these units was investigated. The laser reflection technique was used to measure the initial displacements of the consolidated teeth under loading. The results were as follows: 1. The instantaneous center of resistance for the four anterior teeth was located vertically between level 4 and level 5-that is, at $37.4\%$ apical to the cementoenamel junction level. 2. The instantaneous center of resistance for the six anterior teeth was located vertically just beneath level 5-that is, at $50.3\%$ apical to the cementoenamel junction level. 3. Increasing force levels had little effect on the location of the center of resistance of a given unit. 4. The location of the instantaneous center of resistance shifted apically as the number of dental units consolidated increased.

  • PDF

Three-dimensional finite element analysis of initial tooth displacement according to force application point during maxillary six anterior teeth retraction using skeletal anchorage (골격성 고정원을 이용한 상악 6전치 후방 견인시 힘의 적용점 변화에 따른 치아 이동 양상에 관한 유한 요소법적 분석)

  • Kim, Chan-Nyeon;Sung, Jae-Hyun;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.339-350
    • /
    • 2003
  • The purpose of this study was to investigate the micro-implant height and anterior hook height to prevent maxillary six anterior teeth from lingual tipping and extruding during space closure. We manufactured maxillary dental arch form, bracket and wire, using the computer aided three-dimensional finite element method. Bracket was $.022'{\times}.028'$ slot size and attached to tooth surface. Wire was $.019'{\times}.025'$ stainless steel and $.032'{\times}.032'$ stainless steel hook was attached to wire between lateral incisor and canine. Length of hook was 8mm and force application points were marked at intervals of In. Four micro-implants were implanted on alveolar bone between second premolar and first molar. The heights of them were 4, 6, 8, 10mm starting from wire. We analyzed initial displacement of teeth by various force application point applying force of 150gm to each micro-implant and anterior hook. The conclusions of 4his study are as the following : 1. When the micro-implant height was 4m and the anterior hook height was 5mm and below, anterior teeth were tipped lingually. When the anterior hook height was 6mm and above, anterior teeth were tipped labially. 2. When the micro-implant height was 6mm and the anterior hook height was 6mm and below, the anterior teeth were tipped lingually. When the anterior hook height was 6m and above, the anterior teeth were tipped labially. But lingual tipping of anterior teeth decreased and labial tipping Increased when the micro-implant height was 6mm, compared with 4mm micro-implant height. 3. When the micro-implant height was 8mm and the anterior hook height was 2mm, the anterior teeth were tipped lingually. When the anterior hook height was 3mm and above, labial tipping movement of the anterior teeth increased proportionally. 4. When the micro-implant height was 10mm and the anterior hook height was 2mm and above, labial tipping of the anterior teeth increased proportionally. 5. As the anterior hook height increased, aterior teeth were tipped more labially. But extrusion occurred on canine and premolar area because of the increase of wire distortion. 6. Movement of the posterior teeth was tipped distally during maxillary six anterior teeth retraction using micro-im plant because of the friction between bracket and were Based on the results of this study, we could predict the pattern of the tooth movement according to position of micro-implant and height of anterior hook. It seems that we can find the force application point for proper tooth movement in consideration of inclination of anterior anterior teeth, periodontal condition, overjet and overbite

The vertical location of the center of resistance for maxillary six anterior teeth during retraction using three dimensional finite element analysis (상악 6전치부의 후방견인시 저항중심의 수직적 위치에 관한 3차원 유한요소법적 연구)

  • Lee, Hye-Kyoung;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.31 no.4 s.87
    • /
    • pp.425-438
    • /
    • 2001
  • The delivery of optimal orthodontic treatment is greatly influenced by clinician's ability to predict and control tooth movement by applying well-known force system to dentition. It is very important to determine the location of the centers of resistance of a tooth or teeth in order to have better understanding the nature of displacement characteristics under various force levels. In this study, three dimensional finite element analysis was used to measure the initial displacement of the consolidated teeth under loading. The purpose of this study was to define the location of the centers of resistance at the upper six anterior segment. To observe the changes of six anterior segment, 200gm, 250gm, 300gm, and 350gm forces at right and left hand side each were imposed toward lingual direction. For this study, two cases, six anterior teeth and six anterior teeth after corticotomy, were reviewed. In addition, it was reviewed the effects of changes on the location of the center of resistance in both cases based on different degree of forces aforementioned. The results were that : 1. The instantaneous center of resistance for the six anterior teeth was vertically located between level 4 and level 5, which is, at 6.76mm, $44.32\%$ apical to the cementoenamel junction level. 2. The instantaneous center of resistance for the six anterior teeth after corticotomy was located vertically between level 4 and level 5, that is, at 7.09mm $46.38\%$ apical to the cementoenamel junction level. 3. Changes of force showed little effect on the location of the center of resistance in each case. 4. It was observed that the location of the instantaneous center of resistance for the six anterior teeth after corticotomy was changed more than the six anterior teeth without corticotomy to the apical part, and the displacement of the consolidated anterior teeth moved further in case of the consolidated teeth after corticotomy.

  • PDF

A new protocol of the sliding mechanics with Micro-Implant Anchorage(M.I.A.) (Micro-Implant Anchorage(MIA)를 이용한 Sliding mechancis)

  • Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.30 no.6 s.83
    • /
    • pp.677-685
    • /
    • 2000
  • Anchorage plays an important role in orthodontic treatment. Because of limited anchorage Potential and acceptance problems of intra- or extraoral anchorage aids, endosseous implants have been suggested and used. However, clinicians have hesitated to use endosseous implants as orthodontic anchorage because of limited implantation space, high cost, and long waiting period for osseointegration. Titanium miniscrews and microscrews were introduced as orthodontic anchorage due to their many advantages such as ease of insertion and removal, low cost, immediate loading, and their ability to be placed in any area of the alveolar bone. In this study, a skeletal Class II Patient was treated with sliding mechanics using M.I.A.(micro-implant anchorage). The maxillary micro-implants provide anchorage for retraction of the upper anterior teeth. The mandibular micro-implants induced uprighting and intrusion of the lower molars. The upward and forward movement of the chin followed. This resulted in an increase of the SNB angle, and a decrease of the ANB angle. The micro-implants remained firm and stable throughout treatment. This new approach to the treatment of skeletal Class II malocclusion has the following characteristics . Independent of Patient cooperation. . Shorter treatment time due to the simultaneous retraction of the six anterior teeth . Early change of facial Profile motivating greater cooperation from patients These results indicate that the M.I.A. can be used as anchorage for orthodontic treatment. The use of M.I.A. with sliding mechanics in the treatment of skeletal Class II malocclusion increases the treatment simplicity and efficiency.

  • PDF