• Title/Summary/Keyword: Maxillary fractures

Search Result 116, Processing Time 0.017 seconds

In vitro study of the fracture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses

  • Choi, Jae-Won;Kim, So-Yeun;Bae, Ji-Hyeon;Bae, Eun-Bin;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • PURPOSE. The purpose of this study was to determine fracture resistance and failure modes of three-unit fixed dental prostheses (FDPs) made of lithium disilicate pressed on zirconia (LZ), monolithic lithium disilicate (ML), and monolithic zirconia (MZ). MATERIALS AND METHODS. Co-Cr alloy three-unit metal FDPs model with maxillary first premolar and first molar abutments was fabricated. Three different FDPs groups, LZ, ML, and MZ, were prepared (n = 5 per group). The three-unit FDPs designs were identical for all specimens and cemented with resin cement on the prepared metal model. The region of pontic in FDPs was given 50,000 times of cyclic preloading at 2 Hz via dental chewing simulator and received a static load until fracture with universal testing machine fixed at $10^{\circ}$. The fracture resistance and mode of failure were recorded. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test with Bonferroni's correction (${\alpha}=0.05/3=0.017$). RESULTS. A significant difference in fracture resistance was found between LZ ($4943.87{\pm}1243.70N$) and ML ($2872.61{\pm}658.78N$) groups, as well as between ML and MZ ($4948.02{\pm}974.51N$) groups (P<.05), but no significant difference was found between LZ and MZ groups (P>.05). With regard to fracture pattern, there were three cases of veneer chipping and two interfacial fractures in LZ group, and complete fracture was observed in all the specimens of ML and MZ groups. CONCLUSION. Compared to monolithic lithium disilicate FDPs, monolithic zirconia FDPs and lithium disilicate glass ceramics pressed on zirconia-based FDPs showed superior fracture resistance while they manifested comparable fracture resistances.

A STUDY ON AMALGAM CAVITY FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (아말감 와동의 파절에 관한 3차원 유한요소법적 연구)

  • Kim, Han-Wook;Um, Chung-Moon;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.345-371
    • /
    • 1994
  • Restorative procedures can lead to weakening tooth due to reduction and alteraton of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus and depth are very important. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional. finite element models were made by serial photographic method and cavity depth(1.7mm, 2.4mm) and isthmus (11 4, 1/3, 1/2 of intercuspal distance) were varied. linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B, G and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. G model(Gap Distance: 0.000001mm) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). When compression occurred along the interface, the forces were transferred to the adjacent regions. However, tensile forces perpendicular to the interface were excluded. R model was assumed non-connection between the restoration and cavity wall. No force was transferred to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, von Mises stress, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows: 1. G model showed stress and strain patterns between Band R model. 2. B model and G model showed the bending phenomenon in the displacement. 3. R model showed the greatest amount of the displacement of the buccal cusp followed by G and B model in descending order. G model showed the greatest amount of the displacement of the lingual cusp followed by B and R model in descending order. 4. B model showed no change of the displacement as increasing depth and width of the cavity. G and R model showed greater displacement of the buccal cusp as increasing depth and width of the cavity, but no change in the displacement of the lingual cusp. 5. As increasing of the width of the cavity, stress and strain were not changed in B model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in G and R model. The possibility of the tooth fracture was increased. 6. As increasing of the depth of the cavity, stress and strain were not changed in B and G model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in R model. The possibility of the tooth fracture was increased.

  • PDF

A STUDY ON TOOTH FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (치아파절에 관한 3차원유한요소법적 연구)

  • Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.291-316
    • /
    • 1993
  • Restorative procedures can lead to tooth fracture due to the relatively small amount of the remaining tooth structure. It is essential to prevent fractures by having a clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, MO amalgam cavity were prepared on maxillary first premolar and filled with amalgam. Three dimensional, model with 1365 8-node brick elements was made by serial photographic method. In this model, isthmus was varied in width at 1/4, 1/3, 1/2 and 2/3 of intercuspal width and material properties were given for three element groups, i.e., enamel, dentin and amalgam. A load of 500 N was applied vertically on amalgam and enamel. In case of enamel loading, 2 model (with and without amalgam) was compared to consider the possibility of play at the interface between tooth material and amalgam. These models were analyzed with three dimensional finite element method. The results were as follows: 1. The stress was concentrated on the facio-pulpal line angle and distal marginal ridge of the cavity. 2. With the increase of the isthmus width, the stress spread around the facio-pulpal line angle and the area of stress concentration moved toward the proximal box. 3. In case of narrow isthmus width, the initiation point of crack would be in the area of isthmus corner of the cavity, and with the increase of the isthmus width, it would move toward the proximal box and at the same time the possibility of crack increase at the distal marginal ridge. 4. The direction of crack progressed outward and downward from the facio-pulpal line angle, and with the increase of the isthmus width, it approximated vertical direction. At the marginal ridge, it occurred in vertical direction. 5. It would be favorable to make the isthmus width narrower than a third of the intercuspal width, and to cover the cusp if isthmus width were wider than half of the intercuspal width. 6. It is necessary to apply the possibility of play to the finite element analysis.

  • PDF

A STUDY ON CLASS II COMPOSITE RESIN CAVITY USING FINITE ELEMENT STRESS ANALYSIS (유한요소법을 이용한 2급 복합레진 와동의 비교 연구)

  • Rim, Young-Il;Yo, In-Ho;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.428-446
    • /
    • 1997
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2 of intercuspal distance) were varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows : 1. Displacement of buccal cusp in R model occurred and increased as widening of the cavity, and displacement in B model was little and not influenced by cavity width. 2. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 3. With the increase of the isthmus width, B model showed no change in the stress and strain. In R model, the stress and strain increased both in the area of buccal-pulpal line angle and the buccal side of marginal ridge, therefore the possibility of crack increased. 4. The stress and strain were distributed evenly on the tooth in B model, but in R model, were concentrated on the buccal side of the distal marginal ridge and buccal-pulpal line angle, therefore the possibility of fracture increased.

  • PDF

MARGINAL FIDELITY AND FRACTURE STRENGTH OF IPS EMPRESS $2^{(R)}$ CERAMIC CROWNS ACCORDING TO DIFFERENT CEMENT TYPES

  • Cho Hyun-Ok;Kang Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.545-559
    • /
    • 2002
  • There has been increasing use of IPS Empress $2^{(R)}$ owing to easy fabrication method, high esthetics similar to natural teeth, good marginal accuracy, and sufficient fracture strength. However, in clinical application, although a luting agent and the tooth cementation bonding procedure influence the marginal accuracy and fracture strength restoration, there has been a controversy in the selection of proper luting agent. This study was to measure the marginal fidelites and fracture strength of IPS Empress crowns according to three cement types, Protec $cem^{(R)}$, Variolink $II^{(R)}$ and Panavia $21^{(R)}$. After construction of 12 experimental dies for each group, IPS Empress $2^{(R)}$ crowns were fabricated and luted the metal master die prepartion of the maxillary right premolar. Marginal gaps before cementation and after cementation were measured. Buccal incline on the functional cusp of specimens were loaded until the catastrophic failure and fracture strength was measured. The results of this study were as follows: 1. The range of gap was $34.04{\pm}4.84{\mu}m$ before cementation and $37.88{\pm}5.00{\mu}m$ after cementation, which showed significant difference by paired t-test (p<0.05). The difference in the results from marginal accuracy according to measuring point proved to be not statistically significant by two-way ANOVA test (p>0.05). 2. The difference in the results from marginal accuracy according to three cement types Proved that The Variolink $II^{(R)}$ cement group had the least gap, $35.43{\pm}5.03{\mu}m$, and showed superior marginal accuracy while there existed statistic significance in Protec $cem^{(R)}$ cement group, $39.06{\pm}4.41{\mu}m$ or Panavia $21^{(R)}$ cement group, $39.16{\pm}4.39{\mu}m$ by two-way ANOVA test & multiple range test (p<0.05). 3. The difference in the results from fractures strength testing according to three cement type groups proved to be statistically significant (p<0.05). The Variolink $II^{(R)}$ cement group shows highest fracture strength of $1257.33{\pm}226.77N$, Panavia $21^{(R)}$ cement group has $1098.08{\pm}138.45N$, and Protec $cem^{(R)}$ cement group represents the lowest fracture strength of $926.75{\pm}115.75N$. 4. Three different cement groups of different components showed acceptable marginal fidelity and fracture strength. It is concluded that IPS Empress $2^{(R)}$ crowns luted using Variolink $II^{(R)}$ cement group had stronger fracture strength and smaller marginal gap than the other cement groups. Although Variolink $II^{(R)}$ resin cement seemed acceptable to clinical applications in IPS Empress $2^{(R)}$ system, the IPS Empress $2^{(R)}$ system still requires long-term research due to the lack of data in clinical applications.

AN ANALYSIS OF FAILURE MODE OF TEETH RESTORED WITH FIBER-REINFORCED POSTS UNDER THE CONDITION OF BONY RESORPTION (치주지지가 감소된 상태에서 섬유강화형 포스트로 수복한 치아의 실패양상 분석)

  • Lee Byung-Woo;Yi Yang-Jin;Cho Lee-Ra;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.232-242
    • /
    • 2003
  • Statement of problem : Fiber-reinforced posts have lower modulus of elasticity than titanium post or cast post-core. With this similar elasticity to that of dentin, fiber-reinforced posts have been known to have a tendency to reduce the risk of root fracture. However, there were few studies on the teeth restored with fiber-reinforced posts under the condition of reduced periodontal support. Purpose : The purpose of this study was to evaluate the fracture strength and failure mode of endodontically treated teeth restored with fiber-reinforced posts and titanium posts under the condition of reduced periodontal support. Material and method : Extracted human maxillary incisor roots were divided into 3 groups (group 1 carbon fiber post, group 2 : glass fiber post, and group 3 : titanium alloy post). After coronectomy and endodontic treatment, teeth were restored with each post systems and resin core according to the manufacturer's recommendation. Then, teeth with simulated periodontal ligament were embedded in the acrylic resin blocks at the level of 4 mm below the cemento-enamel junction. Each specimen was exposed to $10^5$ load cycles with average 30 N force in $36.5^{\circ}C$ water using a computer-controlled chewing simulator. Loads were applied at $45^{\circ}$ angle to the long axis of the teeth. After cyclic loading, teeth were subjected a compressive load until failure at a crosshead speed of 0.5 mm/min. Fracture strength (N) and failure mode were examined. The fracture strength was analyzed with one-way ANOVA and the Scheffe adjustment at the 95% significance level. Results and conclusion : The results were as follows. 1. There was no statistically significant difference in the mean fracture strength among the groups (P<.05). 2. Carbon fiber post and glass fiber post group showed less root fracture tendency than control group. 3. All specimens with root fractures showed fracture lines above the level of acrylic resin block, except for only one specimen in group 3.