• 제목/요약/키워드: Max_Min 신경망

검색결과 44건 처리시간 0.022초

패턴 분류를 위한 개선된 FCM 기반 하이브리드 네트워크 (Enhanced FCM-based Hybrid Network for Pattern Classification)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제13권9호
    • /
    • pp.1905-1912
    • /
    • 2009
  • FCM 알고리즘은 입력 벡터와 각 클러스터의 유클리드 거리를 이용하여 구해진 소속도만를 비교하여 데이터를 분류하기 때문에 클러스터링 된 공간에서의 데이터들의 분포에 따라 바람직하지 못한 클러스터링 결과를 보일 수 있다. 이러한 문제점을 개선하기 위해 대칭적 성질을 이용하는 대칭성 측도에 퍼지 이론을 적용하여 군집간의 거리에 따른 변화와 군집 중심의 위치, 그리고 군집 형태에 따라 영향을 덜 받는 개선된 FCM이 제안되었다. 본 논문에서는 효과적으로 패턴을 분류하기 위해 개선된 FCM 알고리즘을 적용한 개선된 하이브리드 네트워크를 제안한다. 제안된 하이브리드 네트워크는 개선된 FCM 알고리즘을 입력층과 중간층의 학습구조 적용하고 중간층과 출력층의 학습 구조는 일반화된 델타 학습법을 적용한다. 제안된 방법의 인식 성능을 평가하기 위해 2차원 좌표 평면 상의 데이터를 기존의 Max_Min 신경망을 이용한 FCM 기반 RBF 네트워크와 FCM 기반 RBF 네트워크, HCM 기반 네트워크와 제안된 방법 간의 학습 및 인식 성능을 비교 및 분석하였다.

원격 카메라 로봇 제어를 위한 동적 제스처 인식 (Dynamic Gesture Recognition for the Remote Camera Robot Control)

  • 이주원;이병로
    • 한국정보통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1480-1487
    • /
    • 2004
  • 본 연구에서는 원격 카메라 로봇 제어를 위한 새로운 제스처 인식 방법을 제안하였다. 제스처 인식의 전처리 단계인 동적 제스처의 세그먼테이션이며, 이를 위한 기존의 방법은 인식 대상에 대한 많은 칼라정보를 필요로 하고, 인식단계에서는 각각 제스처에 대한 많은 특징벡터들을 요구하는 단점이 있다. 이러한 단점을 개선하기 위해, 본 연구에서는 동적 제스처의 세그먼테이션을 위한 새로운 Max-Min 탐색법과 제스처 특징 추출을 위한 평균 공간 사상법과 무게중심법, 그리고 인식을 위한 다층 퍼셉트론 신경망의 구조 둥을 제안하였다 실험에서 제안된 기법의 인식율이 90%이상으로 나타났으며, 이 결과는 원격 로봇 제어를 위한 휴먼컴퓨터 인터페이스(HCI : Human Compute. Interface)장치로 사용 가능함을 보였다.

가중치를 갖는 FMM신경망과 패턴분류를 위한 특징분석 기법 (A Weighted FMM Neural Network and Feature Analysis Technique for Pattern Classification)

  • 김호준;양현승
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권1호
    • /
    • pp.1-9
    • /
    • 2005
  • 본 논문에서는 패턴 분류를 위한 수정된 퍼지 최대최소 신경망 모델을 제안하고 그의 유용성을 고찰한다. 이를 위하여 하이퍼박스 내에서 각 특징들에 대하여 가중치 요소론 갖는 새로운 하이퍼큐브 소속함수를 정의한다. 이 가중치 요소는 분류과정에서 임의의 클래스에 대한 각 특징의 상대적인 기여도를 반영한다. 본 연구에서는 이를 위하여 새롭게 정의된 하이퍼박스 생성, 확장 및 축소의 3단계로 이루어지는 학습 방법론을 소개한다. 또한 제안된 모델을 기반으로 하여 학습된 분류기로부터 하이퍼박스 소속함수와 연결가중치를 사용하여 주어진 클래스에 대한 특징의 연관도를 산출하는 형태의 이른바 특징 분석 기법을 제안한다. 이를 위하여 세부적으로 각 특징에 대하여 연관도 척도와 퍼지 소속함수간의 유사도 척도를 정의한다. 또한 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.

효과적인 패턴분류를 위한 개선된 FCM 기반 하이브리드 네트워크 (Enhanced FCM Based Hybrid Network for Effective Pattern Classification)

  • 김태형;차의영;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.35-40
    • /
    • 2009
  • FCM 알고리즘은 입력 벡터와 각 클러스터의 유클리드 거리를 이용하여 구해진 소속도만를 비교하여 데이터를 분류하기 때문에 클러스터링 된 공간에서의 데이터들의 분포에 따라 바람직하지 못한 클러스터링 결과를 보일 수 있다. 이러한 문제점을 개선하기 위해 대칭적 성질을 이용하는 대칭성 측도에 퍼지 이론을 적용하여 군집간의 거리에 따른 변화와 군집 중심의 위치, 그리고 군집 형태에 따라 영향을 덜 받는 개선된 FCM이 제안되었다. 본 논문에서는 효과적으로 패턴을 분류하기 위해 개선된 FCM 알고리즘을 적용한 개선된 하이브리드 네트워크를 제안한다. 제안된 하이브리드 네트워크는 개선된 FCM 알고리즘을 입력층과 중간층의 학습구조 적용하고 중간층과 출력층의 학습구조는 일반화된 델타학습법을 적용한다. 제안된 방법의 인식성능을 평가하기 위해 2차원 좌표평면 상의 데이터를 기존의 Max_Min 신경망을 이용한 FCM 기반 RBF 네트워크와 FCM 기반 RBF 네트워크, HCM 기반 네트워크와 제안된 방법 간의 학습 및 인식 성능을 비교 및 분석하였다.

  • PDF

다중 필터와 복합형 신경망을 이용한 얼굴 검출 기법 (Face Detection Using Multiple Filters and Hybrid Neural Networks)

  • 조일국;박현정;김호준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2005년도 학술대회
    • /
    • pp.191-194
    • /
    • 2005
  • 본 논문에서는 방송 영상에서 조명효과와 크기변화 등에 강인한 얼굴패턴 검출기법을 제시한다. 제안된 얼굴검출 모델은 영상 전처리 과정과 얼굴패턴 검출 과정으로 이루어진다. 전처리 과정은 조명변화에 대한 보정기능과 다중필터에 의한 후보영역 선별기능으로 구분된다. 얼굴패턴 검출과정은 다단계의 특징지도 생성과정과 패턴분류 과정으로 이루어진다. 특징지도를 생성하기 위하여 가보(Gabor) 필터계층을 포함하는 CNN(Convolutional Neural Networks)모델을 도입하였다. 다양한 배경을 고려한 효과적인 학습을 위하여 본 논문에서는 억제성의 뉴런(Inhibitory neuron)을 포함하는 구조의 CNN모델을 적용한다. CNN으로부터 추출되는 특징집합은 최종 단계에서 WFMM(Weighted Fuzzy Min Max) 모델을 사용하여 분류된다. 이때 사용되는 특징집합의 크기는 분류기의 규모 및 계산량의 결정적인 역할을 준다. 이에 본 연구에서는 최종 분류 과정에 사용되는 특징의 수를 효과적으로 줄이기 위해 FMM모델을 사용하는 적응적인 특징 선별 기법을 제안한다. 또한 실제 영상을 통한 실험결과로부터 제안된 이론의 타당성을 고찰한다.

  • PDF

ABR 서비스에서 퍼지 트래픽 제어 방식 (The Fuzzy Traffic Control Method for ABR Service)

  • 유재택;김용우;이진이;이광형
    • 한국정보처리학회논문지
    • /
    • 제3권7호
    • /
    • pp.1880-1893
    • /
    • 1996
  • 본 논문에서는 ATM 링크의 이용을 향상을 위해 ABR 서비스에서의 퍼지 트래픽 제어 방식을 제안한다. 제안된 방식은 ABR 서비스에서 전송률 제어 방식인 EPRCA를 개선한 것으로써 송신원의 전송률 제어값을 스위치단의 버퍼량과 버퍼 별화율로 퍼지 추론을 실시하여 얻는 방식이다. 본 논문에서는 ATM 트래픽 제어에 적용된 퍼지, 신경 망의 경우와 ATM의 ABR 서비스 제어 방식인 EPRCA 방식을 알아본 후, 퍼지 트래픽 제어 방식의 모형과 알고리즘, 퍼지 트래픽 제어기 등을 연계한다. 퍼지 트래픽 제어 기에서는 사용 소속함수, 퍼지 제어 규칙,max-min 추론 방법 등을 설계한다. 본 논문 에서 제안된 방식은 모의 실험을 통해 기존의 EPRCA 방식과 퍼지 트래픽 제어방식의 링크 이용율을 비교·분석함으로써 그 우수성을 검증한다. 모의 실험 결과 퍼지 트래 픽 제어 방식이 EPRCA 방식보다 송신원의 정규 분포 모델의 경우 2.3%, MMPP 모델의 경우 2.7%의 링크 이용률 개선을 얻었다.

  • PDF

WPS와 장갑 장치 기반의 동적 제스처 인식기의 구현 (An Implementation of Dynamic Gesture Recognizer Based on WPS and Data Glove)

  • 김정현;노용완;홍광석
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.561-568
    • /
    • 2006
  • 차세대 PC를 위한 WPS(Wearable Personal Station)는 정보 처리 및 네트워크 기능을 포함하며 새로운 정보의 획득에 있어 공간적 한계성을 극복할 수 있는 '유비쿼터스 컴퓨팅'의 핵심 단말기로 정의할 수 있다. 기존의 유선 통신 모듈을 이용한 데스크톱 PC 기반의 제스처 인식기는 영상 또는 장갑 장치로부터 사용자의 의미 있는 동적 제스처 데이터를 획득함에 있어 공간상의 제약성 및 이동상의 한계성, 배경 및 음영조건의 변화에 따른 인식 성능의 변화 등 몇 가지 제약사항을 가지고 있다. 따라서 본 논문에서는 이러한 문제점들을 극복하고 해결하고자 제스처 입력모듈을 차세대 PC 플랫폼 기반의 유비쿼터스 환경으로 확대, 적용시켜 제스처 데이터 입력 모듈로부터 새로운 정보의 획득에 있어 한계성을 극복하고 효율적인 데이터 획득 방안을 제시한다 또한 퍼지 알고리즘과 신경망 이론을 이용하여 독립적인 제스처 인식 시스템을 구현하고 개별 시스템의 성능을 비교, 분석함으로써 차세대 PC를 위한 보다 효율적이며 합리적인 제스처 인식 시스템을 제안한다. 제안된 제스처 인식시스템은 동적인 손의 움직임을 입력데이터로 처리하는 제스처 입력모듈과 입력된 데이터로부터 의미 있는 제스처를 분리하기 위한 관계형 DBMS모듈, 그리고 인식의 확장성과 연속된 동적 제스처 중에서 의미 있는 제스처를 인식하기 위한 퍼지 인식 모듈 및 신경망 인식 모듈로 구성되어 있다. 30인의 피실험자에 대하여 15회의 반복 실험을 수행하였으며 사용자의 동적 제스처 인식 실험결과 퍼지 제스처 인식 시스템에서는 98.8%, 신경망 제스처 인식시스템에서는 96.7%의 평균 인식률을 도출하였다.형성에도 유의한 영향을 미치는 것을 알 수 있었다. 셋째, 신뢰와는 다르게 서비스품질이 몰입에는 유의한 영향을 미치지 못하는 것으로 나타났다. 그러나 이러한 직접적인 영향이외에 서비스품질은 고객만족을 통하여 간접적으로 몰입에 강한 영향을 미치는 것으로 나타났다. 넷째, 고객만족은 신뢰에 강하게 정(+)의 영향을 미치는 것으로 나타났다. 즉 고객들이 호텔서비스에 만족할수록 직접적으로 호텔에 대한 신뢰와 애착심이 증가하는 것을 알 수 있었고 간접적으로 서비스품질은 고객만족을 통하여 신뢰에 강한 영향을 미치는 것으로 나타났다. 다섯째, 또한 고객만족은 몰입에 강하게 정(+)의 영향을 미치는 것으로 나타났다. 간접적으로 서비스품질은 고객만족을 통하여 몰입에 강한 영향을 미치는 것으로 나타났다.미숙밭, 중점밭, 고원밭, 화산회밭으로 6개 유형으로 분류할 경우 각각의 분포면적은 41.9%, 23.3%, 17.5%, 13.9%, 1.1. 2.2% 이었다. 도시화 및 도로확대 등 다양한 토지이용 및 지형개변으로 과거의 토양정보가 많이 변경되었다. 그래서, 앞으로는 인공위성자료 및 항공사진을 이용하여 빠르고 쉽게 활용할 수 있는 토양조사 방법개발과 기 구축된 토양도의 수정, 보완 작업이 필요한 절실히 요구되고 있는 현실이다.브로 출시에 따른 마케팅 및 고객관리와 관련된 시사점을 논의한다.는 교합면에서 2, 3, 4군이 1군에 비해 변연적합도가 높았으며 (p < 0.05), 인접면과 치은면에서는 군간 유의차를 보이지 않았다 이번 연구를 통하여 복합레진을 간헐적 광중합시킴으로써 변연적합도가 향상될 수 있음을 알 수 있었다.시장에 비해 주가가 비교적 안정적인 수준을 유지해 왔다고 볼

상태 오토마타와 기본 요소분류기를 이용한 가상현실용 실시간 인터페이싱 (Virtual Environment Interfacing based on State Automata and Elementary Classifiers)

  • 김종성;이찬수;송경준;민병의;박치항
    • 한국정보처리학회논문지
    • /
    • 제4권12호
    • /
    • pp.3033-3044
    • /
    • 1997
  • 본 논문에서는 가상현실의 기본 요소중의 하나인 사용자 인터페이스 분야에서 동적 손 제스처를 실시간으로 인식하는 시스템의 구현에 관하여 상술한다. 사람의 손과 손가락은 사람마다 같은 동작이라도 데이터의 변화가 다양하며 같은 동작을 반복해서 할 때에도 다른 데이터를 얻게되는등 시간에따른 변화도 존재한다. 또한, 손가락의 외형 및 물리적 구조가 사람마다 다르기 때문에 다른 두사람에 의해 만들어진 같은 손 모양도 일반적인 센싱장비에의해 측정될 때 다른 측정값을 나타낸다. 또한 동적 손제스처에서 동작의 시작과 끝을 명확히 구분하기가 매우 힘들다. 본 논문에서는 동적 손 제스처에 대해 각각의 의미있는 동작을 구분하기위해 상태 오토마타를 이용하였고, 인식 범위의 확장성을 고려하여 동적 손 제스처를 퍼지 이론을 도입한 특징 해석에의해 기본 요소인 손의 운동을 분류하고 퍼지 최대-최소 신경망을 적용하여 손의 모양을 분류함으로써 전체 손 제스처를 인식하는 시스템을 제안한다.

  • PDF

손 제스터 인식을 이용한 실시간 아바타 자세 제어 (On-line Motion Control of Avatar Using Hand Gesture Recognition)

  • 김종성;김정배;송경준;민병의;변증남
    • 전자공학회논문지C
    • /
    • 제36C권6호
    • /
    • pp.52-62
    • /
    • 1999
  • 본 논문에서는 가상 환경에서 움직이는 인체 Avatar의 움직임을 인간의 가장 자연스러운 동작의 하나인 손 제스처를 이용하여 실시간으로 제어하는 인식 시스템의 구현에 관하여 상술한다. 동적 손 제스처는 컴퓨터와 제스처를 사용하는 사람과의 상호 연결 수단이다.가상공간 상에서의 자연스러운 움직임을 표현하기 위해 32개의 자유도(DOF)를 가진 인체 아바타를 구성하였으며, 정지, 전후좌우로 한 걸음 이동, 걷기, 달리기, 좌우로 회전, 뒤로 돌기, 물건 잡기의 동작 모드를 정의하여 가상공간 상의 인체 아바타는 미리 설정된 손 제스처에 따라 실시간에 따라 실시간으로 3차원공간상에서 움직일 수 있다. 실시간의 인체 아바타 이동에는 역 기구학과 기구학을 혼용하여 적용하였으며, 사이버 터치를 착용한 사용자의 손 제스처 인식에는 인공 신경망 이론과 퍼지 이론을 도입하여 실시간 인식이 가능하였다.

  • PDF

인공신경망 기법을 이용한 장래 잠재증발산량 산정 (Estimation of Future Reference Crop Evapotranspiration using Artificial Neural Networks)

  • 이은정;강문성;박정안;최진영;박승우
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.1-9
    • /
    • 2010
  • Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, artificial neural network (ANN) models for reference crop evapotranspiration ($ET_0$) estimation were developed on a monthly basis (May~October). The models were trained and tested for Suwon, Korea. Four climate factors, daily maximum temperature ($T_{max}$), daily minimum temperature ($T_{min}$), rainfall (R), and solar radiation (S) were used as the input parameters of the models. The target values of the models were calculated using Food and Agriculture Organization (FAO) Penman-Monteith equation. Future climate data were generated using LARS-WG (Long Ashton Research Station-Weather Generator), stochastic weather generator, based on HadCM3 (Hadley Centre Coupled Model, ver.3) A1B scenario. The evapotranspirations were 549.7 mm/yr in baseline period (1973-2008), 558.1 mm/yr in 2011-2030, 593.0 mm/yr in 2046-2065, and 641.1 mm/yr in 2080-2099. The results showed that the ANN models achieved good performances in estimating future reference crop evapotranspiration.