• Title/Summary/Keyword: Matrix tablet

Search Result 42, Processing Time 0.033 seconds

Sustained Release Matrix Tablet Containing Sodium Alginate and Excipients (알긴산나트륨 및 첨가제를 함유한 서방성 매트릭스 정제)

  • Shin, Sung-I;Lee, Beom-Jin;Lee, Tae-Sub;Heo, Bo-Uk;Ryu, Seung-Goo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.187-192
    • /
    • 1996
  • The matrix tablet containing sodium alginate and $CaHPO_4$ can release drugs in a controlled fashion from hydrogel with gelling and swelling due to their interaction as water penetrates the matrices of the tablet. The purpose of this study was to evaluate release characteristics of the matrix tablet varying the amount of sodium alginate, $CaHPO_4$ and other excipients such as chitosan, hydroxypropyl methylcellulose (HPMC) and $Eudragit^{\circledR}$ RS100 in the simulated gastric and intestinal fluid. The practically soluble ibuprofen was used as a model drug. The release profiles of matrix tablet in the gastric fluid as a function of sodium alginate/$CaHPO_4$ ratio was not pronounced because of low solubility of drug and stability of alginate matrices. However, release rate of drug from the matrix tablet in the intestinal fluid was largely changed when sodium alginate/$CaHPO_4$ ratio was increased, suggesting that the ratio of sodium alginate/$CaHPO_4$ was an important factor to control the gelling and swelling of the matrix tablet. The incorporation of other excipients into the matrix tablet also influenced the release rate of drug. The chitosan and HPMC decreased the release rate of drug. No release of drug was occurred when $Eudragit^{\circledR}$ RS100 was added into the tablet. The retarded release of matrix tablet when excipients were added resulted from the hindrance of swelling and gelling of the matrix tablet containing sodium alginate and $CaHPO_4$. The hardness and bulk density of the matrix tablet was not correlated with release rate of drug in the study. From these findings, the ratio of sodium alginate and $CaHPO_4$ in the matrix tablet in addition to incorporation of excipients could be very important to control the release rate of drug in dosage form design.

  • PDF

The Development and Characterization of a pH Dependent Matrix Tablet Containing Probiotics

  • Cho, Seong-Wan;Kim, Young-Kwon
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.184-188
    • /
    • 2016
  • The objective of this study was to develop a pH dependent oral matrix tablet containing probiotics. In this study, hydroxyl-propyl-methyl-cellulose (HPMC) and polyvinyl pyrrolidone K30 (PVP K-30) was utilized as a binder, sodium starch glycolate (SSG) was used as a disintegrant material for the tablet formulation. The disintegration test, hardness test, angle of response were performed to examine the characteristics of prepared tablet. Lactobacillus vitality test was applied to analyze the total Lactobacillus viable count. The results demonstrated that the pH dependent matrix tablet was prepared successfully and can thus be industrialized instead of the current methodologies used for preparation of conventional probiotics.

Evaluation of Physical Properties as Magnesium Stearate Blendedin Hydrophilic Matrix Tablets

  • Choi, Du-Hyung;Jung, Youn-Jung;Wang, Hun-Sik;Yoon, Jeong-Hyun;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Main objectives of this study were to investigate the effects of a lubricant, magnesium stearate, as blended in a hydrophilic matrix tablet and to identify significant factors using a tablet ejection force and a swelling property. The characteristics of tablet ejection were evaluated with three different compression forces (30, 40, and 60 MPa) and two controlled factors, amount of magnesium stearate and its mixing time. A hydrophilic model drug (terazosin HCl dihydrate) was regarded as a default factor. Tablet swelling was also evaluated. The optimal amount of PEG compared to PEO was set to be 88.50% w/w. As the amount of magnesium stearate was varied from 0.79% to 2.20% w/w, the amount of PEO and PEG was adjusted to meet the tablet's total weight while maintaining the ratio between the two excipients constant. As the mixing time of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased. As the amount of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased since the increased mixing time and the amount of magnesium stearate induced hydrophobic properties of the matrix tablet more effectively. The ejection force of the tablet increased as a result of increase in the compression force, which means that the breaking of tablet/die-wall adhesion energy was also increased when the compression energy was increased. The results gavea valuable guide how to choose suitable amount of the lubricant with processing conditions for the development of hydrophilic matrix formulations.

Formulation and sustained release of acetaminophen hydroxypropylmethylcellulose(HPMC) matrix tablet

  • Cao, Qing-Ri;Choi, Yeon-Woong;Lee, Beom-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.292.1-292.1
    • /
    • 2003
  • Purpose. To develop a new heterodisperse 650mg acetaminophen HPMC matrix tablet with biphasic sustained release profiles. Methods. Hydroxypropylmethylcellulose(HPMC) matrix tablets were prepared by wet-granulating drug with other excipients, followed by direct compression of the dried granule mixtures into tablet using a rotary tablet machine. (omitted)

  • PDF

Multi-Layered Matrix Tablets with Various Tablet Designs and Release Profiles

  • Choi, Du-Hyung;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.263-272
    • /
    • 2011
  • Tablet dosage forms have been preferred over other formulations for the oral drug administration due to their low manufacturing costs and ease of administrations, especially controlled-release applications. Controlled-release tablets are oral dosage forms from which the active pharmaceutical ingredient (API) is released over an intended or extended period of time upon ingestion. This may allow a decrease in the dosing frequency and a reduction in peak plasma concentrations and hence improves patient compliance while reducing the risk of undesirable side effects. Conventional singlelayered matrix tablets have been extensively utilized to deliver APIs into the body. However, these conventional single-layered matrix tablets present suboptimal delivery properties, such as non-linear drug delivery profiles which may cause higher side effects. Recently, a multi-layered technology has been developed to overcome or eliminate the limitations of the singlelayered tablet with more flexibility. This technology can give a good opportunity in formulating new products and help pharmaceutical companies enhancing their life cycle management. In this review, a brief overview on the multi-layered tablets is given focusing on the various tablet designs, manufacturing issues and drug release profiles.

Formulation of sustained-release matrix tablets of nifedipine (니페디핀 서방성 정제의 제제설계)

  • Cui, Yu;Kim, Seung-Su;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • Matrix tablets of nifedipine (NP) were prepared with Eudragit, diluent (lactose or Ca. phosphate) and Mg. stearate employing two different preparation methods (wet granulation and direct compression) to develop its sustained-release dosage forms. The effects of various formulation factors on the dissolution rate of the drug were investigated. Dissolution test was studied in pH 6.8 phosphate buffer containing 1% sodium lauryl sulfate using the paddle method. Formulation factors were the type and content of Eudragit, the type of diluent and the tablet preparation method. The optimum formula of NP matrix tablet, which resulted in a similar dissolution profile to that from Adalat Oros used as a reference, was 30 mg NP, 10% Eudragit RS, 2% Mg. stearate and an adequate quantity of lactose to yield 500 mg weight using the wet granulation method.

Preparation and Dissolution Characteristics of A Gastro-Retentive Tablet System Containing Gabapentin (가바펜틴을 함유한 위체류성 정제의 제조 및 용출 평가)

  • You, Kwang-Hee;Lee, Pung-Sok;Oh, Eui-Chaul
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.4
    • /
    • pp.269-273
    • /
    • 2009
  • The objective of this investigation was to develop a gastro-retentive(GR) dosage form of gabapentin and was to evaluate of its dissolution characteristics. GR tablet consists of expandable core tablet matrix and semi-permeable membrane coating. Poloxamer 407 and sodium bicarbonate were used to prepare the core matrix. Polyvinly acetate dispersion (Kollicoat $SR30D^{(R)}$) and polyvinyl alcohol-polyethylene glycol copolymer ((Kollicoat $IR^{(R)}$)) were employed to form the semi-permeable membrane. The GR tablets significantly expanded up to fivefold in simulated gastrointestinal fluids with no apparent damage of the coating membrane over 12 hours. Also, the swelling rate was controllable with the amount of sodium bicarbonate. The drug release was observed to be substantially sustained based on coating level. The release rate of gabapentin from the GR tablet was gradually slowed down as the coasting amount was increased. The gabapentin GR tablet with 8% coating level showed a pseudo-zero order release kinetics over 12 hours. These results suggest that this swellable GR tablet system having semi-permeable membrane coating can be applicable for hydrophilic drug substances like gabapentin.

Preparation and Dissolution Characteristics of the Compression-Coated Controlled Release Tablet Exhibiting Three-step Release (압축코팅법에 의한 3단계 약물방출형 지속성제제의 제조 및 용출특성)

  • Kim, Cheol-Soo;Kwon, Hyeok-Lo;Cha, Bong-Jin;Kwon, Jong-Won;Yang, Joong-Ik;Min, Shin-Hong
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 1992
  • A novel oral controlled release tablet which may offer more uniform drug level in the body than simple zero-order was developed. The tablet is composed of three layers; outer film layer, middle part compression-coated hydroxypropylmethylcellulose (HPMC) matrix layer, and inner core layer. Each layer contains nicardipine HCl as a model drug. In vitro dissolution test showed that the tablet released the drug in clear three steps; a rapid initial release, followed by a constant rate of release, and then a second phase of fast release of drug. The dissolution characteristics could be modified easily by changing the grade of HPMC, thickness of matrix layer, content of methylcellulose in matrix layer, content of active ingredient in each layer. The pH of dissolution medium did not affect the release profile. This three-step release system is expected to raise the blood concentration rapidly to effective level and to maintain effective blood level longer than simple slow-release systems.

  • PDF

Pharmaceutical Formulation and Evaluation of Sustained - Release Hydrophilic Matrix Tablet of Cefatrizine Propyleneglycol Using Polyethylene Oxide (폴리에틸렌옥사이드를 이용한 세파트리진프로필렌글리콜 서방성매트릭스 정제의 제조 및 평가)

  • Lee, Eon-Hyoung;Park, Sun-Young;Jee, Ung-Kil;Kim, Dong-Chool
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.37-41
    • /
    • 2001
  • Various characteristics of polyethylene oxide (PEO) are useful for drug delivery systems. In this study, PEO was used as a sustained release matrix system containing cefatrizine propyleneglycol (Cefa-PG) which is a new semi-synthetic broad-spectrum and orally active cephalosporin. Five kinds of sustained release matrix tablets were formulated with various content of PEO and other ingredients. And three types of matrix tablets were formulated of which compositions were the same but the hardness was different. It was found that PEO content influenced drug release rate. Increasing PEO content, the drug release rate from matrix tablets was decreased. In addition, Avicel, one of the ingredients of matrix components, changed the drug release from the sustained release PEO matrix tablets. With increasing Avicel content, the rate of drug release was increased. For the effect of hardness of matrix tablets, the rate of drug release is decreased with increasing hardness. In comparison of bioavailability parameters after oral administration of Cefa-PG PEO matrix tablets and general Cefa-PG capsule in beagle dog, the sustained release PEO matrix tablets is more useful than a general dosage form. $AUC^{0-12}$ of the sustained release PEO matrix tablet and the general dosage form was 1.16 and 0.644 respectively.

  • PDF

Studies on the Dissolution of the Famotidine Matrix Tablets using Polymer (고분자를 이용한 파모티딘 매트릭스 정의 용출에 관한 연구)

  • Choi, G. H.;Han, S.S.;Sohn, D.H.;Kim, J.B.
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.139-144
    • /
    • 1994
  • The effect of some formulation variables on the release rate of famotidine, a $H_2$ receptor antagonist, from cellulose matrices containing hydroxypropylcellulose (HPC) in different ratios and types was investigated. The effects of tablet shape and compression pressure on dissolution rate of famotidine were studied. And the effect of the pH of dissolution media was also studied. Increase in the ratio of polymer to drug decreased the release rate of famotidine. Increase of the polymer viscosity also decreased the release rate. The release rate of famotidine was dependent on the pH of dissolution media. The release rate of drug was not much dependent on the compression pressure but dependent on the tablet shape and/or surface area. Consequently, the release rate of famotidine can be modified by changing the HPC contents, types of polymers with different viscosity grades or using appropriate fillers.

  • PDF