• Title/Summary/Keyword: Matrix metalloproteinases

Search Result 331, Processing Time 0.044 seconds

The Relationship Between Expression of Matrix Metalloproteinases(MMPs)-2, 9 and Tissue Inhibitors of Metalloproteinase(TIMPs)-1, 2 and Survival Time in Resected Non-Small Cell Lung Cancer (비소세포폐암에서 Matrix Metalloproteinase(MMPs)-2, 9와 Tissue Inhibitor of Metalloproteinase(TIMPs)-1, 2의 발현과 생존율과의 관계)

  • Kim, Hak-Ryul;Yang, Sei-Hoon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.453-462
    • /
    • 2002
  • Background : Matrix metalloproteinases(MMPs) are a large family of proteolytic enzymes, which are involved in the degradation of many different components of the extracellular matrix. There is increasing evidence indicating that individual MMPs have important roles in tumor invasion by inactivating the MMPs. In this study, the correlation between MMPs and TIMPs expression, and the clinical outcome was investigated. Materials and Methods : Immunohistochemical staining of MMP-2, 9 and TIMP-1,2 were performed on paraffin-embedded tumor sections from 74 resected primary non-small cell lung cancers. Results : In 74 patients, MMP-2, MMP-9, TIMP-1, and TIMP-2 immunoreactivity was demonstrated in 24(34%), 19(26%) and 32(43%) of the paraffin-embedded tumors, respectively. The median survival of the MMP-2 positive cases was significantly shorter than that of the negative cases(20 vs 34 months). The median survival of the TIMP-2 positive cases was also was significantly longer than that of the negative cases (34 vs 18 months). The MMP-2, and MMP-9 expression level had a positively correlation with a more advanced stage and lymph node metastasis. There was inverse correlation between TIMP-2 expression and tumor invasion. The median survival of the MMP-2 negative/TIMP-2 positive cases was higher than that of the other cases. Conclusion : These results suggest that tumor invasion and lymph node metastasis are closely related to MMP-2 and MMP-9 expression. There was an inverse correlation between TIMP-2 and MMP-9 expression, and tumor invasion.

Protein Expression of Matrix Metalloproteinases of Mouse Reproductive Organs During Estrous Cycle (생식주기에 따른 자성 생쥐의 생식기관의 Matrix Metalloproteinase의 단백질 발현)

  • Kim, Moon-Young;Lee, Ki-Won;Kim, Hae-Kwon;Kim, Moon-Kyoo;Cho, Dong-Jae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.2
    • /
    • pp.161-170
    • /
    • 1998
  • Protein expression patterns of matrix metalloproteinases (MMPs) were examined in mouse reproductive organs during estrous cycle. Estrous cycle was classified into diestrus, proestrus, estrus or metestus and MMP expression was analyzed by zymography using gelatin as a substrate. Uterine fluid (UF) obtained both at diestrus and proestrus exhibited 4 major MMPs including 106kDa, 64kDa, 62kDa and 59kDa gelatinases. However, in UF at estrus, the gelatinolytic activity of 64kDa MMP disappeared and that of 106kDa and 62kDa MMPs dramatically decreased. At metestrus, 64kDa MMP activity reappeared and 106kDa and 62kDa MMP exhibited increased activities such that the band intensity of 106kDa was comparable to that in UF at diestrus. Gelatinolytic activity of 59kDa MMP was not changed throughout the cycle. Both ovarian and oviductal tissue homogenate revealed 4 MMPs which corresponded to the 4 MMPs of UF. However, unlike UF MMPs, gelatinolytic activity of these MMPs did not show distinct changes throughout the cycle. Either an inhibitor of MMP, 1,10-phenanthroline, or a metal chelator, EDTA, abolished the appearance of the above MMP activities in gelatinated gel whereas a serine proteinase inhibitor, phcnylmethylsulfonyl fluoride, failed to inhibit the appearance of MMP activities, proving that gelatinolytic activity of the above reproductive tissues were due to the enzymatic activity of MMP. When gclatinolytic activity of mouse serum was examined, it revealed 5 MMPs (131kDa, 106kDa, 89kDa, 64kDa and 62kDa bands) and one gelatinase (84kDa) band. From these results, it is concluded that the protein expression of MMPs of mouse reproductive organs, particularly uterus, is temporally regulated during estrous cycle and uterine 106kDa, 64kDa and 62kDa MMPs are suggested to play an important role in cyclic tissue remodeling of mouse uterus.

  • PDF

Correlations of Oral Tongue Cancer Invasion with Matrix Metalloproteinases(MMPs) and Vascular Endothelial Growth Factor(VEGF) Expression (Matrix Metalloproteinases(MMPs) 및 Vascular Endothelial Growth Factor(VEGF)의 발현을 통한 구강 설암의 침윤 기전 연구)

  • Kim Se-Heon;Cho Nam-Hoon;Lim Jae-Yul;Kim Ji-Hoon;Kim Jeong-Hong;Chang Jung-Hyun;Choi Eun-Chang
    • Korean Journal of Head & Neck Oncology
    • /
    • v.21 no.1
    • /
    • pp.3-9
    • /
    • 2005
  • Purpose: In oral tongue cancer, the degree of tumor invasion has a significant effect on the prognosis. We hypothesized that the destruction of extracelluar matrix and neovascularization are related to tumor infiltration mechanism. By studying the the tissues of early stage oral tongue cancer patients, we are intend to clarify the invasion related factors in oral tongue cancer. Material and Methods: To demonstrate the invasion process in early T-stage oral tongue cancer, the expressions of extracellular matrix destruction related molecules(MMP2, MMP9) and neovascularization related molecule(VEGF) were observed by immunohistochemical study. Also, immunohistochemical staining of CD31 was done for quantification of neovascularization. With the experiment showed above, we analyzed relationship between expression of each substances and tumor invasion depth, tumor free survival rates and cervical lymph node metastasis rate in early T-stage oral tongue cancer. Results: The expression rates of MMP2, MMP9, VEGF in 38 early oral cancer patients were 52.6%, 78.9% 52.6%, respectively. Significant correlation was found between the VEGF expression and microvessel density showed by CD31 immunohistochemical staining(p<0.001). VEGF expressions were significantly related with tumor invasion depth(p=0.002). The tumor free survival rate of those patients with VEGF-positive tumors was significantly poorer than in those with VEGF-negative tumors(p=0.019). Conclusion: This results indicate that VEGF is a useful marker for predicting the tumor invasion in patients with early tongue cancer and could be used as a beneficial factors in defining operative field and prognosis.

The effect of lead on matrix metalloproteinase-9 expression in rat primary glial cells

  • Park, Min-Sik;Lee, Woo-Jong;Kim, Young-Eun;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.84-84
    • /
    • 2003
  • Lead has long been considered as a toxic environmental pollutant, which severely damages central nervous system. Lead can cause hypo- and de-myelination, and glial cells are closely related with myelination or demyelination. Matrix metalloproteinases (MMPs) are proteolytic enzymes that are involved in the remodelling of the extracellular matrix in a variety of physiological and pathological processes. MMPs also seem to be important in the pathogenesis of inflammatory demyelinating diseases of the central and peripheral nervous system. In this study, we investigated whether lead affects MMP-9 expression in rat primary glial cells. Treatment of 0.1-5 ${\mu}$M lead dose- and time-dependently increased MMP-9 expression in rat primary glial cells. The activity of MMPs was determined using zymography. Lead activated Erk(1/2) but neither of the other endogenous MAP kinases, p38 or JNK. Inhibition of Erk(1/2) activation by PD98059, a MEK inihibitor, prevented lead-induced expression of MMP-9. The results of the present study suggest that lead intoxication may adversely affect brain function at least in part by inducing MMP-9 expression through Erk(1/2) activation in primary glial cells.

  • PDF

Expression of the Type IV Collagenase Genes and ras Oncogene in Various Human Tumor Cell Lines

  • Moon, A-Ree;Park, Sang-Ho;Lee, Sang-Hun
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.484-487
    • /
    • 1996
  • The matrix metalloproteinases (MMPs) are members of a unique family of proteolytic enzymes that degrade components of the extracellular matrix. Significant evidence has accumulated to directly implicate members of the MMPs in tumor invasion and metastasis formation. To investigate the correlation between ras oncogene and MMP gene expression in various tumor cells, we detected mRNAs for the ras, MMP-2 and MMP-9 (72 kD and 92 kD type IV collagenases, respectively) genes in nine human tumor cell lines. The ras gene was expressed in seven cell lines; MMP-2 in three; MMP-9 in two cell lines tested. There was no direct correlation between the ras oncogene and MMP expression. A clear difference in the mRNA expression between MMP-2 and MMP-9 was observed among the cell lines. As an approach to study the effect of the ras oncogene on metastasis, we examined the expressions of MMP-2 and MMP-9 in HT1080 cells transfected with the v-H-ras gene. MMP-9 expression was Significantly enhanced in the ras-transfected HT1080 cells compared with the nontransfectants while ras transfection did not affect the expression of MMP-2. These results suggest the possible inducing effect of the ras oncogene on the metastasis by activation of the MMP-9 gene in HT1080.

  • PDF

Effect of nitric oxide on the expression of matrix metalloproteinases by the UV irradiated human dermal fibroblasts

  • Taeboo Choe;Lee, Bumchun;Park, Inchul;Seokil Hong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2002
  • The production of matrix matalloproteinases(MMPs) by the UV irradiated skin fibroblast and the degradation of extracellular matrix(ECM) by these enzymes is known as one of the main reasons of photoaging. Recently, Fisher group showed that the MMP expression is mainly regulated by the mitogen-activated protein(MAP) kinas family, such as extracellular signal-regulated kinase(ERK), c-Jun amino-terminal kinase(JNK) and p38, each of which forms a signaling pathway. In this work we first examined the effect of nitric oxide (NO) on the production of MMP-1 and MMP-2 by the human dermal fibroblasts (HDFs). NO is a multifunctional messenger molecule generated from L-arginine and involved in many kinds of signaling pathway. We found that the treatment of HDF with NO donor, sodium nitroprusside (SNP) enhanced the expression of MMPs with or without UV irradiation and the treatment with nitric oxide synthase (NOS) inhibitors resulted in the significant decrease of MMPs production. From these results, we concluded that the production of MMPs by the UV irradiated HDF is regulated through the signaling pathway involving NO and cyclic GMP.

Baicalin suppresses lipopolysaccharide-induced matrix metalloproteinase expression: action via the mitogen-activated protein kinase and nuclear factor κB-related protein signaling pathway

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • Periodontal disease is an inflammatory disease that affects the destruction of the bone supporting the tooth and connective tissues surrounding it. Periodontal ligament fibroblasts (PDLFs) induce overexpression of matrix metalloproteinase (MMP) involved in periodontal disease's inflammatory destruction. Osteoclasts take part in physiological bone remodeling, but they are also involved in bone destruction in many kinds of bone diseases, including osteoporosis and periodontal disease. This study examined the effect of baicalin on proteolytic enzymes' production and secretion of inflammatory cytokines in PDLFs and RAW 264.7 cells under the lipopolysaccharide (LPS)-induced inflammatory conditions. Baicalin inhibited the expression of the protein, MMP-1 and MMP-2, without affecting PDLFs' cell viability, suggesting its possibility because of the inhibition of phosphorylation activation of mitogen-activated protein kinase's p38, and the signal transduction process of nuclear factor κB (NFκB)-related protein. Also, baicalin reduced the expression of MMP-8 and MMP-9 in RAW 264.7 cells. This reduction is thought to be due to the inhibition of the signal transduction process of NFκB-related proteins affected by inhibiting p65RelA phosphorylation. Also, baicalin inhibited the secretion of nitric oxide and interleukin-6 induced by LPS in RAW 264.7 cells. These results suggest that baicalin inhibits connective tissue destruction in periodontal disease. The inhibition of periodontal tissue destruction may be a therapeutic strategy for treating inflammatory periodontal-diseased patients.

The Anti-Wrinkle Mechanism of Ganoderma lucidum mycelial with Acorus gramineus callus in UVB Treated HaCaT Keratinocytes

  • Eun-Sil Ko;Sang-Min Cho;Sol Lee;Ji-Hye Jung;Jea-Ran Kang;Jong-Hoon Jeong;Dong-gue Shin;Jeong Hun Seo;Jeong-Dan Cha
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.74-74
    • /
    • 2020
  • Skin is continuously exposed to a variety of environmental stresses, including ultraviolet (UV) radiation. UVB is an inherent component of sunlight that crosses the epidermis and reaches the upper dermis, leading to increased oxidative stress, activation of inflammatory response and accumulation of DNA damage among other effects. In the present study, the anti-wrinkle mechanism of Acorus gramineus callus culture supernatant (GB-AGS-PSC) was elucidated in UVB treated HaCaT keratinocytes. GB-AGS-PSC prevented the matrix metalloprotease 1 (MMP-1), elastin, and pro-collagen product and cytotoxicity and SOD inhibition. Quantitative polymerase chain reaction showed that GB-AGS-PSC-treated cells displayed dose-dependent increase in messenger RNA expression levels of Aquaporin 3 (AQP3), Keratin 1(KRT1), fillagrin, and hyaluronan synthase-2 (HAS 2) and decreased expression levels of matrix metalloproteinase-3, -9, and -13 in UVB treated HaCaT keratinocytes. Additionally, GB-AGS-PSC suppressed TNF-α, IL-1β, and IL-8 product for inflammatory responses in UVB treated HaCaT keratinocytes. Therefore, GB-AGS-PSC may be useful as an anti-photoaging resource for the skin.

  • PDF

Effects of Extracellular Stimulation of Different Niche Condition on the Transcriptional Regulation of Matrix Metalloproteinase Genes in the Mouse Embryonic Stem Cells

  • Yun, Jung Im;Kim, Min Seong;Lee, Seung Tae
    • Reproductive and Developmental Biology
    • /
    • v.37 no.2
    • /
    • pp.79-83
    • /
    • 2013
  • Matrix metalloproteinases (MMPs) have been known to affect to cell migration, proliferation, morphogenesis and apoptosis by degrading the extracellular matrix. In the previous studies, undifferentiated mouse embryonic stem cells (ESCs) were successfully proliferated inside the extracellular matrix (ECM) analog-conjugated three-dimensional (3D) poly ethylene glycol (PEG)-based hydrogel. However, there is no report about MMP secretion in ESCs, which makes it difficult to understand and explain how ESCs enlarge space and proliferate inside 3D PEG-based hydrogel constructed by crosslinkers containing MMP-specific cleavage peptide sequence. Therefore, we investigated what types of MMPs are released from undifferentiated ESCs and how extracellular signals derived from various niche conditions affect MMP expression of ESCs at the transcriptional level. Results showed that undifferentiated ESCs expressed specifically MMP2 and MMP3 mRNAs. Transcriptional up-regulation of MMP2 was caused by the 3D scaffold, and activation of integrin inside the 3D scaffold upregulated MMP2 mRNAs synergistically. Moreover, mouse embryonic fibroblasts (MEFs) on 2D matrix and 3D scaffold induced upregulation of MMP3 mRNAs, and activation of integrins through conjugation of extracellular matrix (ECM) analogs with 3D scaffold upregulated MMP3 mRNAs synergistically. These results suggest that successful proliferation of ESCs inside the 3D PEG-based hydrogel may be caused by increase of MMP2 and MMP3 expression resulting from 3D scaffold itself as well as activation of integrins inside the 3D PEG-based scaffold.

The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities

  • I Nyoman Semita;Dwikora Novembri Utomo;Heri Suroto;I Ketut Sudiana;Parama Gandi
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.72-83
    • /
    • 2023
  • Background: Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%-69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Methods: A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 µL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twenty-eight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. Results: The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. Conclusions: The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.