• 제목/요약/키워드: Matrix contraction

검색결과 56건 처리시간 0.025초

Comprehensive Analysis on Wrinkled Patterns Generated by Inflation and Contraction of Spherical Voids

  • Lim, Min-Cheol;Park, Jaeyoon;Jung, Ji-Hoon;Kim, Bongsoo;Kim, Young-Rok;Jeong, Unyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.651-658
    • /
    • 2018
  • We comprehensively investigated the wrinkles of a stiff layer covering a spherical void embedded in a rubber matrix after the void experienced inflation or contraction. We developed an easy experimental way to realize the inflation and contraction of the voids. The inflation took place in a void right beneath the surface of the matrix and the contraction happened in a void at the bottom of the rubber matrix. In the inflation, the wrinkle at the center of the deformation was random, and the pattern propagated into rabyrinthine, herringbone, and then oriented parallel lines as the position was away from the center of the inflation to the edge. The cracks were concentric, which were perpendicular to the parallel wrinkled pattern. In the contraction, the wrinkle was simply concentric around the surface of the void without any crack. The cracks were found only near the center of the deformation. The strain distribution in the stiff layer after the inflation and contraction was theoretically analyzed with simulations that were in excellent agreement with the experimental results.

Tissue engineering of dental pulp on type I collagen

  • Lee, Gwang-Hee;Huh, Sung-Yoon;Park, Sang-Hyuk
    • Restorative Dentistry and Endodontics
    • /
    • 제29권4호
    • /
    • pp.370-377
    • /
    • 2004
  • The purpose of this study was to regenerate human dental pulp tissues similar to native pulp tissues. Using the mixture of type I collagen solution, primary cells collected from the different tissues (pulp, gingiva, and skin) and NIH 3T3 ($1{\;}{\times}{\;}10^5{\;}cells/ml/well$) were cultured at 12-well plate at $37^{\circ}C$ for 14 days. Standardized photographs were taken with digital camera during 14 days and the diameter of the contracted collagen gel matrix was measured and statistically analyzed with student t-test. As one of the pulp tissue engineering, normal human dental pulp tissue and collagen gel matrix cultured with dental pulp cells for 14 days were fixed and stained with Hematoxyline & Eosin. According to this study, the results were as follows: 1. The contraction of collagen gel matrix cultured with pulp cells for 14 days was significantly higher than other fibroblasts (gingiva, skin) (p < 0.05), 2. The diameter of collagen gel matrix cultured with pulp cells was reduced to 70.4% after 7 days, and 57.1% after 14 days. 3. The collagen gel without any cells did not contract, whereas the collagen gel cultured with gingiva and skin showed mild contraction after 14 days (88.1% and 87.6% respectively). 4. The contraction of the collagen gel cultured with NIH 3T3 cells after 14 days was higher than those cultured with gingival and skin fibroblasts, but it was not statistically significant (72.1%, p > 0.05). 5. The collagen gel matrix cultured with pulp cells for 14 days showed similar shape with native pulp tissue without blood vessels. This approach may provide a means of engineering a variety of other oral tissue as well and these cell behaviors may provide information needed to establish pulp tissue engineering protocols.

A CHARACTERIZATION OF AN SN-MATRIX RELATED WITH L-MATRIX

  • KIM, SI-JU;CHOI, TAEG-YOUNG
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.333-342
    • /
    • 2006
  • We denote by Q(A) the set of all matrices with the same sign pattern as A. A matrix A is an SN-matrix provided there exists a set S of sign patterns such that the set of sign patterns of vectors in the null-space of A is S, for each A ${\in}$ Q(A). We have a characterization of an SN-matrix related with L-matrix and we analyze the structure of an SN-matrix.

  • PDF

Enhancing Dermal Matrix Regeneration and Biomechanical Properties of $2^{nd}$ Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing

  • Cho Lee Ae-Ri
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1311-1316
    • /
    • 2005
  • To better define the relationship between dermal regeneration and wound contraction and scar formation, the effects of epidermal growth factor (EGF) loaded in collagen sponge matrix on the fibroblast cell proliferation rate and the dermal mechanical strength were investigated. Collagen sponges with acid-soluble fraction of pig skin were prepared and incorporated with EGF at 0, 4, and 8 $\mu$g/1.7 $cm^{2}$. Dermal fibroblasts were cultured to 80$\%$ confluence using DMEM, treated with the samples submerged, and the cell viability was estimated using MTT assay. A deep, $2^{nd}$ degree- burn of diameter 1 cm was prepared on the rabbit ear and the tested dressings were applied twice during the 15-day, post burn period. The processes of re-epithelialization and dermal regeneration were investigated until the complete wound closure day and histological analysis was performed with H-E staining. EGF increased the fibroblast cell proliferation rate. The histology showed well developed, weave-like collagen bundles and fibroblasts in EGF-treated wounds while open wounds showed irregular collagen bundles and impaired fibroblast growth. The breaking strength (944.1 $\pm$ 35.6 vs. 411.5 $\pm$ 57.0 Fmax, $gmm^{-2}$) and skin resilience (11.3 $\pm$ 1.4 vs. 6.5 $\pm$ 0.6 mJ/$mm^{2}$) were significantly increased with EGF­treated wounds as compared with open wounds, suggesting that EGF enhanced the dermal matrix formation and improved the wound mechanical strength. In conclusion, EGF-improved dermal matrix formation is related with a lower wound contraction rate. The impaired dermal regeneration observed in the open wounds could contribute to the formation of wound contraction and scar tissue development. An extraneous supply of EGF in the collagen dressing on deep, $2^{nd}$ degree-burns enhanced the dermal matrix formation.

MINIMUM PERMANENTS ON DOUBLY STOCHASTIC MATRICES WITH PRESCRIBED ZEROS

  • Song, Seok-Zun
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.211-223
    • /
    • 2013
  • We consider permanent function on the faces of the polytope of certain doubly stochastic matrices, whose nonzero entries coincide with those of fully indecomposable square (0, 1)-matrices containing identity submatrix. We determine the minimum permanents and minimizing matrices on the given faces of the polytope using the contraction method.

Contraction Behavior of Collagen Gel and Fibroblats Activity in Dermal Equivalent Model

  • Yang, Eun-Kyung;Lee, Doo-Hoon;Park, Sue-Nie;Choe, Tae-Boo;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.267-271
    • /
    • 1997
  • We developed a dermal equivalent (DE) which was engineered using human dermal fibroblasts and a matrix of collagen gel. The in vitro construction of the DE was accomplished by casting a porcine collagen type I solution plus concentrated medium with isolated and cultured fibroblasts. These constructs were attached to culture dishes or left floating in culture medium. Contraction of attached gels results in decreased gel thickness without a change in gel diameter, and contraction of floating gels results in decreased gel thickness and diameter. After contraction, there was no increase in cell number in floating gels, but cells in attached gels began to increase after about 4 days of the lag phase in cell growth curve. At this lag phase, addition of fibroblast growth factor (FGF) at a concentration of $0.1{\mu}$/ml promoted cell proliferation in the attached collagen gels, but no effect in floating gels. These results indicate that the method of contraction had an influence on the extracellular matrix (ECM) organization, and this influenced not only cell growth but also fibroblast responsiveness to FGF. This suggests that attached collagen gel is more suitable as a dermal equivalent than the floating gel. And the final contracted area of attached gel is much larger than that of the floating gel since floating gel is contracted in all directions but attached gel is contracted only vertically.

  • PDF

CONTRACTION MAPPING PRINCIPLE AND ITS APPLICATION TO UNIQUENESS RESULTS FOR THE SYSTEM OF THE WAVE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • 호남수학학술지
    • /
    • 제30권1호
    • /
    • pp.197-203
    • /
    • 2008
  • We show the existence of the unique solution of the following system of the nonlinear wave equations with Dirichlet boundary conditions and periodic conditions under some conditions $U_{tt}-U_{xx}+av^+=s{\phi}_{00}+f$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, ${\upsilon}_{tt}-{\upsilon}_{xx}+bu^+=t{\phi}_{00}+g$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, where $u^+$ = max{u, 0}, s, t ${\in}$ R, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator. We first show that the system has a positive solution or a negative solution depending on the sand t, and then prove the uniqueness theorem by the contraction mapping principle on the Banach space.

수축된 콜라겐 격자와 배양된 각질형성세포를 이용한 피부 대용물질의 제조에 관한 연구 (Preparation of Living Skin Equivalent by using the Contracted Collagen Lattice and Cultured Human Keratinocytes)

  • 박재경;조금철;박호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권1호
    • /
    • pp.51-62
    • /
    • 1993
  • An experimental study was performed for the preparation of living skin-equivalent by the using collagen gel contraction with human fibroblasts as neodermls and cultured human keratinocytes as neoderm is . The results were as follows ; 1) The rate of collagen gel contraction was dependent on the number of fibroblasts into the lattice and collagen contraction was progressed according to the increment of the number of the cells. 2) The rate of collagen gel contraction was progressed according to the decrement of the contraction of the collagen. 3) The rate of gel contraction was progressed according to the increment of serum concentration in the fixed concentration of the fibroblasts and collagen. 4) The lattice contraction was decreased according to the increment of the population doublings of the fibroblasts. 5) Macroscopically, the artificial dermis was gray white in color and tissue-like consistency and elas- ticity. 6) Microscopically, three dimensionally contracted artificial dermis showed more dense fibroblasts and its newly formed collagen fibrils in the matrix than one dimensionally contracted one. 7) Finally prepared skin-equivalent showed good attachment of living stratified keratinocytes to the dermal equivalent microscopically. It has been proposed that newly formed skin-equivalent is suitable for the graft of extensively and deeply burned patients. Shortening of the manufacturing period of skin-equivalent and development of conservation technique as a readily usable state are to be solved for our ongoing works.

  • PDF

불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구 (A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

Is "Initial Size of the Graft the Real Culprit behind Primary Contraction of Full-Thickness Skin Graft"?-A Cross-Sectional Study

  • Madhubari Vathulya;Shalinee Rao;Akanksha Malik;Smita Sinha;Nikhilesh Kumar;Akshay Kapoor;Yogesh Bahurupi
    • Archives of Plastic Surgery
    • /
    • 제50권1호
    • /
    • pp.106-115
    • /
    • 2023
  • Background Primary contraction of full-thickness graft has been traditionally quoted to be 40%. There are lacunae in literature to elaborate on the factors influencing it ever since. Methods About 75 subjects who underwent full-thickness grafting procedures to resurface small defects were included in the study. The initial and final graft dimensions after primary contraction were traced on X-ray templates and the percentage of contraction was evaluated using the graphical method. This was further correlated with age, collagen, elastic matrix metalloproteinases-1 (MMP-1) and -2 content along with dermal thickness of the skin specimen sent from the graft. Results The primary contraction of the graft had a very significant correlation only with the initial size of graft harvested with a linear regression of 33.3% and a Spearman's correlation of 0.587 significant at a p-value of 0.001. Conclusion This study though preliminary tries to highlight an important factor that primary contraction of grafts is a physical phenomenon independent of its contents like collagen, elastin, or MMP-1 and -2 or age and dependent on its initial size of harvest instead.