• 제목/요약/키워드: Matrix coefficients

검색결과 498건 처리시간 0.027초

유사변환기법을 이용한 3차원 모델의 개발 (Developing a Three-dimensional Spectral Model Using Similarity Transform Technique)

  • 강관수;소재귀;정경태;선우중호
    • 한국해안해양공학회지
    • /
    • 제5권2호
    • /
    • pp.107-120
    • /
    • 1993
  • 본 논문은 유사변환기법을 이용한 새로운 3차원 연직 모우드 전개 모델의 개발에 대하여 기술한다. 기본방정식을 External 모우드와 Internal 모우드로 분리시킨 다음 Internal 모우드식에 Galerkin 방법을 적용하고 구성되는 행열방정식에 유사변환기법을 적용, 기저함수의 계수 값을 구하였다. 최종 얻어지는 기저함수의 계수 값은 마찰장을 제외하고는 비연계되어 시간 간격의 제약을 거의 받지않고 연직 구조를 구할 수 있기 때문에 경제성면에서 탁월하다. 수립된 모델은 어떤 기저함수라도 적용 가능하나 현 단계에서는 Chebyshev 다항식함수가 사용되었으며, 바람응력은 일정한 것으로 가정하였다. 모델 테스트로서 정상상태의 균일한 바람응력이 가해지는 장방형 Basin에 적용하여 모델의 적용 가능성을 검증하였다.

  • PDF

Spectral Reflectivity Recovery from Tristimulus Values Using 3D Extrapolation with 3D Interpolation

  • Kim, Bog G.;Werner, John S.;Siminovitch, Michael;Papamichael, Kostantinos;Han, Jeongwon;Park, Soobeen
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.507-516
    • /
    • 2014
  • We present a hybrid method for spectral reflectivity recovery, using 3D extrapolation as a supplemental method for 3D interpolation. The proposed 3D extrapolation is an extended version of 3D interpolation based on the barycentric algorithm. It is faster and more accurate than the conventional spectral-recovery techniques of principal-component analysis and nonnegative matrix transformation. Four different extrapolation techniques (based on nearest neighbors, circumcenters, in-centers, and centroids) are formulated and applied to recover spectral reflectivity. Under the standard conditions of a D65 illuminant and 1964 $10^{\circ}$ observer, all reflectivity data from 1269 Munsell color chips are successfully reconstructed. The superiority of the proposed method is demonstrated using statistical data to compare coefficients of correlation and determination. The proposed hybrid method can be applied for fast and accurate spectral reflectivity recovery in image processing.

Cu-TiB2 복합재료의 마모거동에 따른 미세조직 관찰 (Observation on the Microstructures of Cu-TiB2 Composites with Wear Behavior)

  • 이태우;강계명
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.511-515
    • /
    • 2006
  • The dispersion hardened $Cu-TiB_2$ composites are a promising candidate for applications as electrical contact materials. The $Cu-TiB_2$ composites for electrical contact materials can reduce material cost and resource consumption caused by wear, due to their good mechanical and electrical properties. In this study, we investigated the wear phenomenon for $Cu-TiB_2$ composites fabricated with hot extrusion, by varying particle sizes and volume fractions of $TiB_2$. The wear tests were performed under the dry sliding condition with a fixed total sliding distance of 40 m. The contact loads at a constant speed of 3.5 Hz were 20, 40, 60, and 80 N. The friction coefficients and wear losses were measured during wear tests. Worn surfaces and wear debris after wear tests were investigated using the scanning electron microscope and the optical microscope. The microstructures of interface between Cu matrix and $TiB_2$ particle before and after wear tests were studied by the transmission electron microscope.

Elastic Analysis of a Cracked Ellipsoidal Inhomogeneity in an Infinite Body

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.709-719
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of reinforcements is a significant damage mode because the cracked reinforcements lose carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and cracked ellipsoidal inhomogeneities in an infinite body under uniaxial tension and pure shear. For the intact inhomogeneity, as well known as Eshelbys solution, the stress distribution is uniform in the inhomogeneity and nonuniform in the surrounding matrix. On the other hand, for the cracked inhomogeneity, the stress in the region near the crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and cracked inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that a cracked inhomogeneity with high aspect ratio still maintains higher load carrying capacity.

  • PDF

HSVA 두 탱커 선형에 대한 점성유동 계산 (Numerical Calculation of Viscous Flows for Two HSVA Tankers)

  • 곽영기
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.138-146
    • /
    • 1999
  • The viscous flow around a ship hull is calculated by the use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stresses are midelled by using the k-${epsilon}$ turbulence model and the law is applied near the body. Body fitted corrdinates are introduced for the treatment of the complex boundary of the ship hull form and the governing equations in the physical domain transformed into ones in the computational domain. The transformed equations are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implicit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the sidcretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). To assure the proprietty of this computing method, HSVA tanker and Dyne hull are calculated ar both model and ship scale Reynolds number. Their reaults of pressure distributions on fore and aft body, axial velocity contours and transverse velocity velocity vectors and viscous resistance coefficients are compared with other's experiments and calculations.

  • PDF

Framework for Content-Based Image Identification with Standardized Multiview Features

  • Das, Rik;Thepade, Sudeep;Ghosh, Saurav
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.174-184
    • /
    • 2016
  • Information identification with image data by means of low-level visual features has evolved as a challenging research domain. Conventional text-based mapping of image data has been gradually replaced by content-based techniques of image identification. Feature extraction from image content plays a crucial role in facilitating content-based detection processes. In this paper, the authors have proposed four different techniques for multiview feature extraction from images. The efficiency of extracted feature vectors for content-based image classification and retrieval is evaluated by means of fusion-based and data standardization-based techniques. It is observed that the latter surpasses the former. The proposed methods outclass state-of-the-art techniques for content-based image identification and show an average increase in precision of 17.71% and 22.78% for classification and retrieval, respectively. Three public datasets - Wang; Oliva and Torralba (OT-Scene); and Corel - are used for verification purposes. The research findings are statistically validated by conducting a paired t-test.

유사변환기법을 이용한 Galerkin-FEM모델 (A Three-Dimensional Galerkin-FEM Model Using Similarity Transform Technique)

  • 강관수;소재귀;정경태
    • 한국해안해양공학회지
    • /
    • 제6권2호
    • /
    • pp.174-185
    • /
    • 1994
  • 본 논문에서는 수평유속의 연직방향 변화 결정에 유한요소기법(FEM)을 이용하고 수평방향으로는 유한차분기법을 사용하는 복합형 Galerkin 연직함수 전개모델에 새로이 유사변환기법을 추가한 3차원 해수유동모델의 개발에 대하여 기술하였다. 기본방정식의 연직방향으로 선형보간함수를 기저함수로 사용하여 Galerkin 기법을 적용하여 구성되는 행열 방정식에 유사변환기법을 적용, 각 절점의 유속값을 해석적으로 구하였다. 유사변환기법을 적용하여 최종 얻어지는 모우드 shape 방정식은 비연계된 방정식으로 구성되므로 역행렬 계산이 필요없어 계산시간이 절약된다. 또한 수립된 모델은 고유벡터행렬로 구성되는 모우드 shape가 도입됨으로써 모우드 shape 몇개만 사용하여도 거의 수렴된 값을 얻을 수 있어 계산시간을 절약할 수 있다. 등수심하 유한영역과 무한영역에서의 수치실험을 통하여 개발된 모델의 적용 가능성을 검증하였다.

  • PDF

Whole learning algorithm of the neural network for modeling nonlinear and dynamic behavior of RC members

  • Satoh, Kayo;Yoshikawa, Nobuhiro;Nakano, Yoshiaki;Yang, Won-Jik
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.527-540
    • /
    • 2001
  • A new sort of learning algorithm named whole learning algorithm is proposed to simulate the nonlinear and dynamic behavior of RC members for the estimation of structural integrity. A mathematical technique to solve the multi-objective optimization problem is applied for the learning of the feedforward neural network, which is formulated so as to minimize the Euclidean norm of the error vector defined as the difference between the outputs and the target values for all the learning data sets. The change of the outputs is approximated in the first-order with respect to the amount of weight modification of the network. The governing equation for weight modification to make the error vector null is constituted with the consideration of the approximated outputs for all the learning data sets. The solution is neatly determined by means of the Moore-Penrose generalized inverse after summarization of the governing equation into the linear simultaneous equations with a rectangular matrix of coefficients. The learning efficiency of the proposed algorithm from the viewpoint of computational cost is verified in three types of problems to learn the truth table for exclusive or, the stress-strain relationship described by the Ramberg-Osgood model and the nonlinear and dynamic behavior of RC members observed under an earthquake.

A Numerical and Experimental Study on Dynamics of A Towed Low-Tension Cable

  • 정동호;박한일
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.191-196
    • /
    • 2002
  • The paper presents a numerical and experimental investigation on dynamic behaviors of a towed low tension cable. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional cable equations. Fluid and geometric non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Block tri-diagonal matrix method is applied for the fast calculation of the huge size of matrices. In order to verify the numerical results and to see real physical phenomena, an experiment is carried out for a 6m cable in a deep and long towing tank. The cable is towed in two different ways; one is towed at a constant speed and the other is towed at a constant speed with top end horizontal oscillations. Cable tension and shear forces are measured at the top end. Numerical and experimental results are compared with good agreements in most cases but with some differences in a few cases. The differences are due to drag coefficients caused by vortex shedding. In the numerical modeling, non-uniform element length needs to be employed to cope with the sharp variation of tension and shear forces at near top end.

  • PDF

Design optimization of vibration isolation system through minimization of vibration power flow

  • Xie, Shilin;Or, Siu Wing;Chan, Helen Lai Wa;Choy, Ping Kong;Liu, Peter Chou Kee
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.677-694
    • /
    • 2008
  • A vibration power minimization model is developed, based on the mobility matrix method, for a vibration isolation system consisting of a vibrating source placed on an elastic support structure through multiple resilient mounts. This model is applied to investigate the design optimization of an X-Y motion stage-based vibration isolation system used in semiconductor wire-bonding equipment. By varying the stiffness coefficients of the resilient mounts while constraining the dynamic displacement amplitudes of the X-Y motion stage, the total power flow from the X-Y motion stage (the vibrating source) to the equipment table (the elastic support structure) is minimized at each frequency interval in the concerned frequency range for different stiffnesses of the equipment table. The results show that when the equipment table is relatively flexible, the optimal design based on the proposed vibration power inimization model gives significantly little power flow than that obtained using a conventional vibration force minimization model at some critical frequencies. When the equipment table is rigid enough, both models provide almost the same predictions on the total power flow.