• Title/Summary/Keyword: Matrix coefficients

Search Result 498, Processing Time 0.028 seconds

Comparison of Breeding Value by Establishment of Genomic Relationship Matrix in Pure Landrace Population (유전체 관계행렬 구성에 따른 Landrace 순종돈의 육종가 비교)

  • Lee, Joon-Ho;Cho, Kwang-Hyun;Cho, Chung-Il;Park, Kyung-Do;Lee, Deuk Hwan
    • Journal of Animal Science and Technology
    • /
    • v.55 no.3
    • /
    • pp.165-171
    • /
    • 2013
  • Genomic relationship matrix (GRM) was constructed using whole genome SNP markers of swine and genomic breeding value was estimated by substitution of the numerator relationship matrix (NRM) based on pedigree information to GRM. Genotypes of 40,706 SNP markers from 448 pure Landrace pigs were used in this study and five kinds of GRM construction methods, G05, GMF, GOF, $GOF^*$ and GN, were compared with each other and with NRM. Coefficients of GOF considering each of observed allele frequencies showed the lowest deviation with coefficients of NRM and as coefficients of GMF considering the average minor allele frequency showed huge deviation from coefficients of NRM, movement of mean was expected by methods of allele frequency consideration. All GRM construction methods, except for $GOF^*$, showed normally distributed Mendelian sampling. As the result of breeding value (BV) estimation for days to 90 kg (D90KG) and average back-fat thickness (ABF) using NRM and GRM, correlation between BV of NRM and GRM was the highest by GOF and as genetic variance was overestimated by $GOF^*$, it was confirmed that scale of GRM is closely related with estimation of genetic variance. With the same amount of phenotype information, accuracy of BV based on genomic information was higher than BV based on pedigree information and these symptoms were more obvious for ABF then D90KG. Genetic evaluation of animal using relationship matrix by genomic information could be useful when there is lack of phenotype or relationship and prediction of BV for young animals without phenotype.

On the Design of Orthogonal Pulse-Shape Modulation for UWB Systems Using Hermite Pulses

  • Giuseppe, Thadeu Freitas de Abreu;Mitchell, Craig-John;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.328-343
    • /
    • 2003
  • Orthogonal pulse-shape modulation using Hermite pulses for ultra-wideband communications is reviewed. Closedform expressions of cross-correlations among Hermite pulses and their corresponding transmit and receive waveforms are provided. These show that the pulses lose orthogonality at the receiver in the presence of differentiating antennas. Using these expressions, an algebraic model is established based on the projections of distorted receive waveforms onto the orthonormal basis given by the set of normalized orthogonal Hermite pulses. Using this new matrix model, a number of pulse-shape modulation schemes are analyzed and a novel orthogonal design is proposed. In the proposed orthogonal design, transmit waveforms are constructed as combinations of elementary Hermites with weighting coefficients derived by employing the Gram-Schmidt (QR) factorization of the differentiating distortion model’s matrix. The design ensures orthogonality of the vectors at the output of the receiver bank of correlators, without requiring compensation for the distortion introduced by the antennas. In addition, a new set of elementary Hermite Pulses is proposed which further enhances the performance of the new design while enabling a simplified hardware implementation.

Feature Extraction of Disease Region in Stomach Images Based on DCT (DCT기반 위장영상 질환부위의 특징추출)

  • Ahn, Byeoung-Ju;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.167-171
    • /
    • 2012
  • In this paper, we present an algorithm to extract features about disease region in digital stomach images. For feature extraction, DCT coefficients of gastrointestinal imaging matrix was obtained. DCT coefficent matrix is concentrated energy in low frequency region, we were extracted 128 feature parameters in low frequency region. Extracted feature parameters can using for differential compression of PACS and, can using for input parameter in CAD.

A Direct Reading Atomic Emission Spectrometer for Chemical Analysis in the Iron and Steels (직독식 원자방출분광기를 이용한 철강중의 성분원소 분석)

  • Kim, Yeong Man;Jeong, Chan Lee;Kim, Seon Tae;Choe, Beom Seok
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.800-807
    • /
    • 1994
  • A method to determine the iron and steels employing a Direct Reading Atomic Emission Spectrometer was investigated. Matrix effect was removed by two correction methods which utilize linear and curvilinear functions. Although two methods gave different sets of matrix correction coefficients, the analytical results by the two methods gave the same results. The analytical results obtained by the present work were well agreed with those obtained by inductively coupled plasma spectrometry.

  • PDF

Automatic and precise calibration of 4-channel cylindrical capacitive displacement sensor (4채널 원통형 정전용량 변위센서의 자동ㆍ정밀 검보정)

  • 김종혁;김일해;박만진;장동영;한동철;백영종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.387-393
    • /
    • 2004
  • General purpose of cylindrical capacitive displacement sensor(CCS) is measuring run-out motion and deflection of rotor. If CCS has narrow sensing range, its sensitivity coefficients must be calibrated precisely. And x, y component of CCS output can be coupled. In this research, CCS calibration procedure is automated with automatic calibration program and PC-controlled stage. And, coupled-terms of CCS signals were removed and the errors between measured position and mapped CCS signal were reduced obviously by sensitivity matrix that linearly.

  • PDF

Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray (플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성)

  • Min Joon-Won;Yoo Seung-Eul;Kim Young-Jung;Suhr Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites (단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향)

  • 김홍건;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.

Structural damage detection using a damage probability index based on frequency response function and strain energy concept

  • Bagherahmadi, Seyed Ahdiye;Seyedpoor, Seyed Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.327-336
    • /
    • 2018
  • In this study, an efficient damage index is proposed to identify multiple damage cases in structural systems using the concepts of frequency response function (FRF) matrix and strain energy of a structure. The index is defined based on the change of strain energy of an element due to damage. For obtaining the strain energy stored in elements, the columnar coefficients of the FRF matrix is used. The new indicator is named here as frequency response function strain energy based index (FRFSEBI). In order to assess the performance of the proposed index for structural damage detection, some benchmark structures having a number of damage scenarios are considered. Numerical results demonstrate that the proposed index even with considering noise can accurately identify the actual location and approximate severity of the damage. In order to demonstrate the high efficiency of the proposed damage index, its performance is also compared with that of the flexibility strain energy based index (FSEBI) provided in the literature.

Actuator and sensor failure detection using direct approach

  • Li, Zhiling;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.213-230
    • /
    • 2014
  • A novel real-time actuator failure detection algorithm is developed in this paper. Actuator fails when the input to the structure is different from the commanded one. Previous research has shown that one error function can be formulated for each actuator through interaction matrix method. For output without noise, non-zero values in the actuator functions indicate the instant failure of the actuator regardless the working status of other actuators. In this paper, it is further demonstrated that the actuator's error function coefficients will be directly calculated from the healthy input of the examined actuator and all outputs. Hence, the need for structural information is no longer needed. This approach is termed as direct method. Experimental results from a NASA eight bay truss show the successful application of the direct method for isolating and identifying the real-time actuator failure. Further, it is shown that the developed method can be used for real-time sensor failure detection.

Free vibration analysis of continuous bridge under the vehicles

  • Tan, Guojin;Wang, Wensheng;Jiao, Yubo;Wei, Zhigang
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.335-345
    • /
    • 2017
  • Free vibration analysis for continuous bridge under any number of vehicles is conducted in this paper. Calculation strategy for natural frequency and mode shape is proposed based on Euler-Bernoulli beam theory and numerical assembly method. Firstly, a half-car planar model is adopted; equations of motion and displacement functions for bridge and vehicle are established, respectively. Secondly, the undermined coefficient matrices for wheels, vehicles, intermediate support, left-end support and right-end support are derived. Then, the numerical assembly technique for conventional finite element method is adopted to construct the overall matrix of coefficients for whole system. Finally, natural frequencies and corresponding mode shapes are determined based on iterative method and overall matrix solution. Numerical simulation is presented to verify the effectiveness of the proposed method. The results reveal that the solutions of present method are exact ones. Natural frequencies and associate modal shapes of continuous bridge under different conditions of vehicles are investigated. The influences of vehicle parameters on natural frequencies are also demonstrated.