• Title/Summary/Keyword: Matrix Equation

Search Result 1,081, Processing Time 0.025 seconds

A Study on Position of Six-Degrees-of-Freedom of vibration Model and Orientation Decision by Adaptive Control Method (6자유도 진동모댈의 위치 및 자세결정을 위한 적응제어기법의 적용에 관한 연구)

  • Kim, J.Y.;Song, S.K.;Han, J.H.;Oh, Y.H.;Cho, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.94-101
    • /
    • 1994
  • About vibration model of Six-degrees-of-freedom(DOF), in mass load, examined results for knowing dynamic interference and response variation is as follows; In case of putting mass load upon the object, experimented results on two-degrees-of-freedom of the translation-1 direction and the rotation-1 direction at open-loop-control system, about 0.19 arcsed in input of the translation-$0.1{\mu}m$ and $0.022{\mu}m$ on input of the rotation-0.5 arcsec, the justicse of motion equation is acknowledged as confirming the appearance of the interference-$0.022{\mu}m$. In establishing calculation of transformation matrix by using analogue circuit, as simulating results that used incomplete differentiation, interference is $1.7{\times}10^{-3}$ arcsec on input of the translation-$0.1{\mu}m$ and $1.4{\times}10^{4}{\mu}m$ on input of the rotation-0.5 arcsec in open-loop-control system. Also it is $4.2{\times}10^{-4}$ arcsec on input of the translation-$0.1{\mu}m$ and $5.6{\times}10^{-5}{\mu}m$ on input of the rotation-0.5 arcesc in closed-loop-control system. As closed-loop-control system is better than open-loop-control system, equivalent accordance is confirmed on original response. Finally, fundamental validity of this theory is acknowledged.

  • PDF

Fundamental study of electrolyte cathode atomic discharge for development of on-line monitoring system (On-line monitoring system 개발에 관한 음극 액상 글로우 방전의 기초 연구)

  • Kim, Kyung-Mi;Woo, Young-A;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.496-501
    • /
    • 2002
  • The electrolyte cathode glow discharge (ELCAD) is a new optical system for direct determination of trace heavy metals in flowing water. ELCAD has been successfully developed for on-line monitoring of heavy metals in flowing water. The application of an atmospheric glow discharge between an electrolyte solution cathode and a platinum rod anode led to the development of stable discharge. The fundamental aspects of new plasma source have been investigated. The fundamental study of ELCAD system has been measured plasma temperature using Einstein-Boltzmann equation after searching Fe atomic emission lines. The spectrum of each elements such as Cu, Pb, Fe, Ni and Cr show only major elemental line and no ionic line possibly due to low temperature plasma source. The detection limits of each elements are also investigated. These informations show that this type of plasma may apply for monitoring of heavy metals in waste water which consists of complex matrix.

Integrated Optimal Design for Suspension to Improve Load/Unload Performance (로드/언로드 성능향상을 위한 서스팬션의 구조최적화)

  • Kim, Ki-Hoon;Son, Suk-Ho;Park, Kyoung-Su;Yoon, Sang-Joon;Park, No-Cheol;Yang, Hyun-Seok;Choi, Dong-Hoon;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.130-137
    • /
    • 2006
  • The HDD(hard disk drive) using Load/unload(L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objects of L/UL are no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF

Circuit DQ Modeling and Analysis of Operating Characteristics for Hybrid Cascade Five-level PWM Rectifier (하이브리드 Cascade 5-레벨 PWM 정류기의 회로 DQ모델링 및 동작특성 해석)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.817-824
    • /
    • 2000
  • This paper presents circuit DQ modeling and analysis of operating characteristics of hybrid cascade multilevel PWM rectifier, especially five-level, without isolation transformers. The circuit DQ transformation changes the original three-phase time varying circuit to stationary equivalent one by employing the synchronously rotating transformation matrix. As a result of circuit DQ modeling, the operating characteristics and some useful design relationships for the system are obtained with ease. That is, the analytic equations for DC voltages and active/reactive power supplied by source with respect to control variables are Presented. Moreover, the DC voltages for the multilevel output generation may be directly built up from AC utility source and the important control equation ensuring 5-level output voltage is obtained. Finally, to confirm the validity of the analysis, MATLAB simulations are carried out and the simulation results show good agreements between analytic predictions and the simulated waveforms.

  • PDF

Average run length calculation of the EWMA control chart using the first passage time of the Markov process (Markov 과정의 최초통과시간을 이용한 지수가중 이동평균 관리도의 평균런길이의 계산)

  • Park, Changsoon
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Many stochastic processes satisfy the Markov property exactly or at least approximately. An interested property in the Markov process is the first passage time. Since the sequential analysis by Wald, the approximation of the first passage time has been studied extensively. The Statistical computing technique due to the development of high-speed computers made it possible to calculate the values of the properties close to the true ones. This article introduces an exponentially weighted moving average (EWMA) control chart as an example of the Markov process, and studied how to calculate the average run length with problematic issues that should be cautioned for correct calculation. The results derived for approximation of the first passage time in this research can be applied to any of the Markov processes. Especially the approximation of the continuous time Markov process to the discrete time Markov chain is useful for the studies of the properties of the stochastic process and makes computational approaches easy.

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • Jeong, Hyeon-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

A Study on the Dynamic Analysis of Mooring System During Hook-up Installation

  • Lee, Min Jun;Jo, Hyo Jae;Lee, Sung Wook;Hwang, Jea Hyuk;Kim, Jea Heui;Kim, Young Kyu;Baek, Dong Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.285-293
    • /
    • 2020
  • This study evaluated the Hook-up installation of an offshore site construction process, which is the final step in an offshore site installation process. During Hook-up installation, the offshore structure can have a detrimental effect on the work stability due to low-frequency motion. Moreover, economic costs can be incurred by the increase in available days of a tugboat. Therefore, this study developed a numerical analysis program to assess the dynamic behavior of mooring systems during hook-up installation to analyze the generally performed installation process and determine when the tugboat should be released. In this program, the behavior of an offshore structure was calculated using Cummin's time-domain motion equation, and the mooring system was calculated by Lumped mass method (LMM). In addition, a tugboat algorithm for hook-up installation was developed to apply the Hook-up procedure. The model used in the calculations was the barge type assuming FPSO (Floating production storage and off-loading) and has a taut mooring system connected to 16 mooring lines. The results of the simulation were verified by comparing with both MOSES, which is a commercial program, and a calculation method for restoring coefficient matrix, which was introduced by Patel and Lynch (1982). Finally, the offset of the structure according to the number of tugboats was calculated using the hook-up simulation, and the significant value was used to represent the calculation result.

Stability Condition of Discrete System with Time-varying Delay and Unstructured Uncertainty (비구조화된 불확실성과 시변 지연을 갖는 이산 시스템의 안정 조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.630-635
    • /
    • 2018
  • In this paper, we consider the stability condition for the linear discrete systems with time-varying delay and unstructured uncertainty. The considered system has time invariant system matrices for non-delayed and delayed state variables, but its delay time is time-varying within certain interval and it is subjected to nonlinear unstructured uncertainty which only gives information on uncertainty magnitude. In the many previous literatures, the time-varying delay and unstructured uncertainty can not be dealt in simultaneously but separately. In the paper, new stability conditions are derived for the case to which two factors are subjected together and compared with the existing results considering only one factor. The new stability conditions improving many previous results are proposed as very effective inequality equations without complex numerical algorithms such as LMI(Linear Matrix Inequality) or Lyapunov equation. By numerical examples, it is shown that the proposed conditions are able to include the many existing results and have better performances in the aspects of expandability and effectiveness.

Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model (집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.

Sampled-Data Modeling and Dynamic Behavior Analysis of Peak Current-Mode Controlled Flyback Converter with Ramp Compensation

  • Zhou, Shuhan;Zhou, Guohua;Zeng, Shaohuan;Xu, Shungang;Cao, Taiqiang
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.190-200
    • /
    • 2019
  • The flyback converter, which can be regarded as a nonlinear time-varying system, has complex dynamics and nonlinear behaviors. These phenomena can affect the stability of the converter. To simplify the modeling process and retain the information of the output capacitor branch, a special sampled-data model of a peak current-mode (PCM) controlled flyback converter is established in this paper. Based on this, its dynamic behaviors are analyzed, which provides guidance for designing the circuit parameters of the converter. With the critical stability boundary equation derived by a Jacobian matrix, the stable operation range with a varied output capacitor, proportional coefficient of error the amplifier, input voltage, reference voltage and slope of the compensation ramp of a PCM controlled flyback converter are investigated in detail. Research results show that the duty ratio should be less than 0.5 for a PCM controlled flyback converter without ramp compensation to operate in a stable state. The stability regions in the parameter space between the output capacitor and the proportional coefficient of the error amplifier are enlarged by increasing the input voltage or by decreasing the reference voltage. Furthermore, the ramp compensation also can extend to the stable region. Finally, time-domain simulations and experimental results are presented to verify the theoretical analysis results.