• Title/Summary/Keyword: Matrices

Search Result 2,628, Processing Time 0.028 seconds

Blind Rhythmic Source Separation (블라인드 방식의 리듬 음원 분리)

  • Kim, Min-Je;Yoo, Ji-Ho;Kang, Kyeong-Ok;Choi, Seung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.697-705
    • /
    • 2009
  • An unsupervised (blind) method is proposed aiming at extracting rhythmic sources from commercial polyphonic music whose number of channels is limited to one. Commercial music signals are not usually provided with more than two channels while they often contain multiple instruments including singing voice. Therefore, instead of using conventional modeling of mixing environments or statistical characteristics, we should introduce other source-specific characteristics for separating or extracting sources in the under determined environments. In this paper, we concentrate on extracting rhythmic sources from the mixture with the other harmonic sources. An extension of nonnegative matrix factorization (NMF), which is called nonnegative matrix partial co-factorization (NMPCF), is used to analyze multiple relationships between spectral and temporal properties in the given input matrices. Moreover, temporal repeatability of the rhythmic sound sources is implicated as a common rhythmic property among segments of an input mixture signal. The proposed method shows acceptable, but not superior separation quality to referred prior knowledge-based drum source separation systems, but it has better applicability due to its blind manner in separation, for example, when there is no prior information or the target rhythmic source is irregular.

Evaluation of the CNESTEN's TRIGA Mark II research reactor physical parameters with TRIPOLI-4® and MCNP

  • H. Ghninou;A. Gruel;A. Lyoussi;C. Reynard-Carette;C. El Younoussi;B. El Bakkari;Y. Boulaich
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4447-4464
    • /
    • 2023
  • This paper focuses on the development of a new computational model of the CNESTEN's TRIGA Mark II research reactor using the 3D continuous energy Monte-Carlo code TRIPOLI-4 (T4). This new model was developed to assess neutronic simulations and determine quantities of interest such as kinetic parameters of the reactor, control rods worth, power peaking factors and neutron flux distributions. This model is also a key tool used to accurately design new experiments in the TRIGA reactor, to analyze these experiments and to carry out sensitivity and uncertainty studies. The geometry and materials data, as part of the MCNP reference model, were used to build the T4 model. In this regard, the differences between the two models are mainly due to mathematical approaches of both codes. Indeed, the study presented in this article is divided into two parts: the first part deals with the development and the validation of the T4 model. The results obtained with the T4 model were compared to the existing MCNP reference model and to the experimental results from the Final Safety Analysis Report (FSAR). Different core configurations were investigated via simulations to test the computational model reliability in predicting the physical parameters of the reactor. As a fairly good agreement among the results was deduced, it seems reasonable to assume that the T4 model can accurately reproduce the MCNP calculated values. The second part of this study is devoted to the sensitivity and uncertainty (S/U) studies that were carried out to quantify the nuclear data uncertainty in the multiplication factor keff. For that purpose, the T4 model was used to calculate the sensitivity profiles of the keff to the nuclear data. The integrated-sensitivities were compared to the results obtained from the previous works that were carried out with MCNP and SCALE-6.2 simulation tools and differences of less than 5% were obtained for most of these quantities except for the C-graphite sensitivities. Moreover, the nuclear data uncertainties in the keff were derived using the COMAC-V2.1 covariance matrices library and the calculated sensitivities. The results have shown that the total nuclear data uncertainty in the keff is around 585 pcm using the COMAC-V2.1. This study also demonstrates that the contribution of zirconium isotopes to the nuclear data uncertainty in the keff is not negligible and should be taken into account when performing S/U analysis.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

The review on standard method of microplastics in soil and groundwater (토양, 지하수 중 미세플라스틱 분석법에 관한 고찰)

  • JongBeom Kwon;Hyeonhee Choi;Sunhwa Park
    • Analytical Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.174-188
    • /
    • 2024
  • This review summarized research trends regarding sample collection methods, pretreatment method, and types of analysis devices for microplastics (MPs) in soil and groundwater matrices. Soil sampling considers the selection of sampling location, depth, and volume. The typically sampling depth is within 15 cm (topsoil), and about 1 kg of mixed each sample. Among spot sampling and continuous flow sampling, groundwater sampling mainly used a continuous flow sampling, with collection rates 2 to 6 L/min in the range of 300~1,000 L, and followed by immediate on-situ filtration. Pretreatment method, applied to soil and groundwater, consist of organic digestion and density separation. In the organic digestion method, H2O2 is recommended among H2O2, acidic, alkaline, and enzymatic method. NaCl is primarily used as a reagent in density separation. However, depending on the density of MPs, other regents can be selectively used like ZnCl2, ZnBr2, and etc. Representative analysis device includes Fourier Transform Infrared (FTIR) and Raman spectroscopy for non-destructive analysis and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) for destructive analysis. µ-FTIR and Raman can count MPs of larger than 10 and 1 ㎛, and analyze MPs materials. However, it is need to sufficiently remove interference, like organic matter, in spectroscopic analysis using essential pretreatment method. Py-GC/MS is being continuously researched because it doesn't require complex pretreatment method and allows quantitative analysis of specific materials.

A Study on the Drug Classification Using Machine Learning Techniques (머신러닝 기법을 이용한 약물 분류 방법 연구)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.8-16
    • /
    • 2024
  • This paper shows the system of drug classification, the goal of this is to foretell the apt drug for the patients based on their demographic and physiological traits. The dataset consists of various attributes like Age, Sex, BP (Blood Pressure), Cholesterol Level, and Na_to_K (Sodium to Potassium ratio), with the objective to determine the kind of drug being given. The models used in this paper are K-Nearest Neighbors (KNN), Logistic Regression and Random Forest. Further to fine-tune hyper parameters using 5-fold cross-validation, GridSearchCV was used and each model was trained and tested on the dataset. To assess the performance of each model both with and without hyper parameter tuning evaluation metrics like accuracy, confusion matrices, and classification reports were used and the accuracy of the models without GridSearchCV was 0.7, 0.875, 0.975 and with GridSearchCV was 0.75, 1.0, 0.975. According to GridSearchCV Logistic Regression is the most suitable model for drug classification among the three-model used followed by the K-Nearest Neighbors. Also, Na_to_K is an essential feature in predicting the outcome.

Origin of limestone conglomerates in the Choson Supergroup(Cambro-Ordovician), mid-east Korea

  • Kwon Y.K.;Chough S.K.;Choi D.K.;Lee D.J.
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.63-65
    • /
    • 2001
  • The Chosen Supergroup (Cambro-Ordovician), mid-east Korea consists mainly of shallow marine carbonates and contains a variety of limestone conglomerates. These conglomerates largely comprise oligomictic, rounded lime-mudstone clasts of various size and shape (equant, oval, discoidal, tabular, and irregular) and dolomitic shale matrices. Most clasts are characterized by jigsaw-fit (mosaic), disorganized, or edgewise fabric and autoclastic lithology. Each conglomerate layer is commonly interbedded with limestone-dolomitic shale couplets and occasionally underlain by fractured limestone layer, capped by calcareous shale. According to composition, characteristic sedimentary structures, and fabric, limestone conglomerates in the Hwajol, Tumugol, Makkol, and Mungok formations of Chosen Supergroup can be classified into 4 types: (1) disorganized polymictic conglomerate (Cd), (2) horizontally stratified polymictic conglomerate (Cs), (3) mosaic conglomerate (Cm), and (4) disorganized/edgewise oligomictic conglomerate (Cd/e). These conglomerates are either depositional (Cd and Cs) or diagenetic (Cm and Cd/e) in origin. Depositional conglomerates are interpreted as storm deposits, tidal channel fills, or transgressive lag deposits. On the other hand, diagenetic conglomerates are not deposited by normal sedimentary processes, but formed by post-depositional diagenetic processes. Diagenetic conglomerates in the Chosen Supergroup are characterized by autoclastic and oligomictic lithology of lime-mudstone clasts, jigsaw-fit (mosaic) fabric, edgewise fabric, and a gradual transition from the underlying bed (Table 1). Autoclastic and oligomictic lithologies may be indicative of subsurface brecciation (fragmentation). Consolidation of lime-mudstone clasts pre-requisite for brecciation may result from dissolution and reprecipitation of CaCO3 by degradation of organic matter during burial. Jigsaw-fit fabric has been considered as evidence for in situ fragmentation. The edgewise fabric is most likely formed by expulsion of pore fluid during compaction. The lower boundary of intraformational conglomerates of depositional origin is commonly sharp and erosional. In contrast, diagenetic conglomerate layers mostly show a gradual transition from the underlying unit, which is indicative of progressive fragmentation upward (Fig. 1). The underlying fractured limestone layer also shows evidence for in situ fragmentation such as jigsaw-fit fabric and the same lithology as the overlying conglomerate layer (Fig, 1). Evidence from the conglomerate beds in the Chosen Supergroup suggests that diagenetic conglomerates are formed by in situ subsurface fragmentation of limestone layers and rounding of the fragments. In situ subsurface fragmentation may be primarily due to compaction, dewatering (upward-moving pore fluids), and dissolution, accompanying volume reduction. This process commonly occurs under the conditions of (1) alternating layers of carbonate-rich and carbonate-poor sediments and (B) early differential cementation of carbonate-rich layers. Differential cementation commonly takes place between alternating beds of carbonate-rich and clay-rich layers, because high carbonate content promotes cementation, whereas clay inhibits cementation. After deposition of alternating beds and differential cementation, with progressive burial, upward-moving pore fluid may raise pore-pressure in the upper part of limestone layers, due to commonly overlying impermeable shale layers (or beds). The high pore-pressure may reinforce propagation of fragmentation and cause upward-expulsion of pore fluid which probably produces edgewise fabric of tabular clasts. The fluidized flow then extends laterally, causing reorientation and further rounding of clasts. This process is analogous to that of autobrecciation, which can be analogously termed autoconglomeration. This is a fragmentation and rounding process whereby earlier semiconsolidated portions of limestone are incorporated into still fluid portions. The rounding may be due mainly to immiscibility and surface tension of lime-mud. The progressive rounding of the fragmented clasts probably results from grain attrition by fluidized flow. A synthetic study of limestone conglomerate beds in the Chosen Supergroup suggests that very small percent of the conglomerate layers are of depositional origin, whereas the rest, more than $80\%$, are of diagenetic origin. The common occurrence of diagenetic conglomerates warrants further study on limestone conglomerates elsewhere in the world.

  • PDF

A Preliminary Study of Flume Experiments on the Flow Velocity for Initial Formation of Bedforms on Bimodal Sand-sized Sediments (이정 사질 퇴적물의 층면구조 형성 속도에 대한 수조 실험 예비 연구)

  • Kim, Hyun Woo;Choi, Su Ji;Choi, Ji Soo;Kwon, Yoo Jin;Lee, Sang Cheol;Kwak, Chang Hwan;Kwon, Yi Kyun
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.218-229
    • /
    • 2016
  • The bedform stability diagram indicates the shape and size of bedforms that will occur to a given grain size and flow velocity. The diagram has been constructed from experimental data which have been mostly acquired by flume experiments. Generally, the flume experiments have been performed on well sorted sediments with unimodal grain size distribution, in order to understand relationship between grain size and flow velocity. According to the diagram, a ripple structure initiates to be formed from lower flow regime flat bed, as the flow velocity increases on the surface of fine-sand or medium-sand sediments. This study aims to verify that the experimental result of bedform stability diagram will be reproduced in our flume experimental systems, and also to confirm that the result is consistent not only on well-sorted sand sediments but also on poorly-sorted sand sediments with bimodal grain size distribution. The experimental results in this study show that initiation of 2D or 3D ripple structure on poorly-sorted sand sediments requires higher flow velocity and shear stress than those for initiation of the structure on well-sorted sand sediments. In general, carbonate sediments are characterized by poor sorting due to inactive hydraulic sorting and bimodal grain size distribution with allochems and matrices. The results suggest that the carbonate depositional system possibly need a higher flow velocity for initial formation of 2D or 3D bedform structures. The reason might be the fact that pulling off and lifting of a grain in poorly sorted sediments require more energy due to sorting, friction, stabilization, armour effects, and their complex interaction. This preliminary study warrants additional experiments under various conditions and more accurate analysis on the relationship between formation of bedforms and grain size distribution.

Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite (COMS 위성의 가시 및 적외 영상 채널로부터 복원된 대류운의 강우강도 향상과 검증)

  • Moon, Yun Seob;Lee, Kangyeol
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.420-433
    • /
    • 2016
  • The purpose of this study is to improve the calibration matrixes of 2-D and 3-D convective rainfall rates (CRR) using the brightness temperature of the infrared $10.8{\mu}m$ channel (IR), the difference of brightness temperatures between infrared $10.8{\mu}m$ and vapor $6.7{\mu}m$ channels (IR-WV), and the normalized reflectance of the visible channel (VIS) from the COMS satellite and rainfall rate from the weather radar for the period of 75 rainy days from April 22, 2011 to October 22, 2011 in Korea. Especially, the rainfall rate data of the weather radar are used to validate the new 2-D and 3-DCRR calibration matrixes suitable for the Korean peninsula for the period of 24 rainy days in 2011. The 2D and 3D calibration matrixes provide the basic and maximum CRR values ($mm\;h^{-1}$) by multiplying the rain probability matrix, which is calculated by using the number of rainy and no-rainy pixels with associated 2-D (IR, IR-WV) and 3-D (IR, IR-WV, VIS) matrixes, by the mean and maximum rainfall rate matrixes, respectively, which is calculated by dividing the accumulated rainfall rate by the number of rainy pixels and by the product of the maximum rain rate for the calibration period by the number of rain occurrences. Finally, new 2-D and 3-D CRR calibration matrixes are obtained experimentally from the regression analysis of both basic and maximum rainfall rate matrixes. As a result, an area of rainfall rate more than 10 mm/h is magnified in the new ones as well as CRR is shown in lower class ranges in matrixes between IR brightness temperature and IR-WV brightness temperature difference than the existing ones. Accuracy and categorical statistics are computed for the data of CRR events occurred during the given period. The mean error (ME), mean absolute error (MAE), and root mean squire error (RMSE) in new 2-D and 3-D CRR calibrations led to smaller than in the existing ones, where false alarm ratio had decreased, probability of detection had increased a bit, and critical success index scores had improved. To take into account the strong rainfall rate in the weather events such as thunderstorms and typhoon, a moisture correction factor is corrected. This factor is defined as the product of the total precipitable waterby the relative humidity (PW RH), a mean value between surface and 500 hPa level, obtained from a numerical model or the COMS retrieval data. In this study, when the IR cloud top brightness temperature is lower than 210 K and the relative humidity is greater than 40%, the moisture correction factor is empirically scaled from 1.0 to 2.0 basing on PW RH values. Consequently, in applying to this factor in new 2D and 2D CRR calibrations, the ME, MAE, and RMSE are smaller than the new ones.

Assessment of Validation Method for Bioactive Contents of Fermented Soybean Extracts by Bioconversion and Their Antioxidant Activities (생물전환된 품종별 대두 발효물의 주요 지표성분 함량 및 분석법 검증과 항산화 활성 평가)

  • Jung, Tae-Dong;Shin, Gi-Hae;Kim, Jae-Min;Oh, Ji-Won;Choi, Sun-Il;Lee, Jin-Ha;Lee, Sang Jong;Heo, In Young;Park, Seon Ju;Kim, Hyun Tae;Kang, Beom Kyu;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.680-689
    • /
    • 2016
  • The present study evaluated the validation method for isoflavone contents of fermented soybean extracts by bioconversion as well as their antioxidant activities. Our results show that the total isoflavone contents of non-fermented and fermented soybean extract ranged between 119.8 to $637.7{\mu}g/g$ and between 567.3 to $2,074.6{\mu}g/g$, respectively. Moreover, fermented soybean extracts had higher contents of isoflavone aglycones, including daidzein, glycitein, and genistein than non-fermented soybean extracts as well as lower contents of isoflavone glucosides such as daidzin, glycitin, and genistin. FRAP and ORAC values ranged between 0.15 to 0.22 and between 195.24 to $753.79{\mu}M$ Trolox equivalents/g in non-fermented and fermented soybean extracts, respectively. These results indicate that fermented soybean extracts had higher total isoflavone contents and antioxidant activities than non-fermented soybean extracts. Bioconversion process in this study may have the potential to produce isoflavone-enriched natural antioxidant agents with high added value from soybean matrices.

The Selection of Appropriate Sampler for the Assessment of Macrobenthos Community in Saemangeum, the West Coast of Korea (새만금 외해역에서 대형 저서동물 군집 조사를 위한 적정 채집기의 선택)

  • 유재원;김창수;박미라;이형곤;이재학;홍재상
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.285-294
    • /
    • 2003
  • To select an appropriate sampler for the environmental monitoring survey in coastal waters of Saemangeum, Jeollabuk-do, a macrobenthic sampling was conducted in April 2002. Employed samplers were dredge (type Charcot), a semi-quantitative sampler and Smith-McIntyre (SM) and van Veen grab (VV) as quantitative ones. One haul was tried for dredge and 3 replicates (0.1 ㎡${\times}$3) for SM and W at each of 11 stations. Comparisons of sediment volume in sampler bucket and of precision of biological parameters (i.e., density, biomass, species number and diversity index, H') were made between SM and VV. Sediment volume was significantly different (SM > VV) at p-value of 0.0050 (paired t-test) and, in average, 3 replicate samples of SM and VV satisfied a precision level of 0.2 by applying 4th root transformation. Patterns of observed and expected species numbers and H' were compared. Dredge-VV samples showed higher affinity than any other pair. Several dominant species in the area were underestimated in dredge samples (e.g., polychaete Heteromastus filiformis. Aricidea assimilis etc.). Quantifying the agreement pattern of multi-species responses was accomplished by estimating correlations between similarity matrices. Correlation between dredge and VV was slightly higher, but near-per-fect matches were found in general. Different ranks and composition among principal species lists were presumably linked to the effect of penetration depth that differs among samplers. Lower level of some species' abundance in VV samples (ca. 50% compared with those of SM) was explained in this context. It seem appropriate to regard the effect as a probable cause of relatively higher correlations in dredge-VV, Overall bio-logica1 features indicated that a better choice could be SM in situations of requiring high data quality. The others work well, however, on observing and defining faunal characteristics and their capability cannot be questionted if we do not expect a first-order quality.