• Title/Summary/Keyword: Matrices

Search Result 2,643, Processing Time 0.031 seconds

An Efficient Face Region Detection for Content-based Video Summarization (내용기반 비디오 요약을 위한 효율적인 얼굴 객체 검출)

  • Kim Jong-Sung;Lee Sun-Ta;Baek Joong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.675-686
    • /
    • 2005
  • In this paper, we propose an efficient face region detection technique for the content-based video summarization. To segment video, shot changes are detected from a video sequence and key frames are selected from the shots. We select one frame that has the least difference between neighboring frames in each shot. The proposed face detection algorithm detects face region from selected key frames. And then, we provide user with summarized frames included face region that has an important meaning in dramas or movies. Using Bayes classification rule and statistical characteristic of the skin pixels, face regions are detected in the frames. After skin detection, we adopt the projection method to segment an image(frame) into face region and non-face region. The segmented regions are candidates of the face object and they include many false detected regions. So, we design a classifier to minimize false lesion using CART. From SGLD matrices, we extract the textual feature values such as Inertial, Inverse Difference, and Correlation. As a result of our experiment, proposed face detection algorithm shows a good performance for the key frames with a complex and variant background. And our system provides key frames included the face region for user as video summarized information.

Solid-Phase Refolding Technology in Recombinant Proteins Recovery: Application Examples to Various Biopharmaceutical Proteins (유전자재조합 단백질 회수 공정에서의 고체상 재접힘 기술: 여러 바이오의약 단백질에의 적용 사례)

  • Kim, Min Young;Suh, Chang Woo;Kim, Chang Sung;Jo, Tae Hoon;Park, Sang Joong;Choi, Won Chan;Lee, Eun Kyu
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-201
    • /
    • 2005
  • Bioprocessing technologies utilizing 'biorecognition' between a solid matrix and a protein is being widely experimented as a means to replacing the conventional, solution-based technology. Frequently the matrices are chromatographic resins with specific functional groups exposed outside. Since the reactions of and interactions with the proteins occur as they are attached to the solid matrix, this 'solid-phase' processing has distinct advantages over the solution-phase technology. Solid-phase refolding of inclusion body proteins uses ion exchange resins to adsorb denaturant-dissolved inclusion body. As the denaturant is slowly removed from the micromoiety around the protein, it is refolded into a native, three-dimensional structure. Once the refolding is complete, the folded protein can be eluted by a conventional elution technique such as the salt-gradient. This concept was successfully extended to 'EBA (expanded bed adsorption)-mediated refolding,' in which the denaturant-dissolved inclusion body in whole cell homogenate is adsorbed to a Streamline resin while cell debris and other impurity proteins are removed by the EBA action. The adsorbed protein follows the same refolding steps. This solid-phase refolding process shows the potential to improve the refolding yield, reduce the number of processing steps and the processing volume and time, and thus improve the overall process economics significantly. In this paper, the experimental results of the solid-phase refolding technology applied to several biopharmaceutical proteins of various types are presented.

The Study on the Slurry Wear Behavior of Rubber Vulcanizates (고무 소재의 슬러리 마모 거동에 관한 연구)

  • Chung, Kyung-Ho;Hong, Young-Keun;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.70-77
    • /
    • 2011
  • A new piece of test equipment, the slurry wear tester (SWT), was proposed in this study to evaluate the wear behavior of rubber vulcanizate in environmental contact with slurry. Natural rubber (NR) and chloroprene rubber (CR) were chosen as the basic matrices to test the slurry wear. The fluids used to fill the chamber of the SWT were 35% HCl and NaCl solution. The Akron abrasion test was used for comparison with SWT. According to the results of the Akron abrasion test, CR vulcanizate abraded more rapidly than NR vulcanizate under same test condition. It was found that the hysteresis of rubber was key factor contribute to the wear behavior. However, the slurry wear rate of the NR and CR vulcanizates did not change significantly, even with changes in the concentration of acid and the immersion time in both HCl and NaCl solutions; the fluid decreased the friction between the abrasive paper and the specimen. It also reduced the heat generated from repeated deformation and wear debris at the surface of the SWT's abrasion arm. Thus, these phenomena affected the wear behavior of rubber vulcanizate and caused different results in the conventional Akron abrasion test. This outcome could have resulted in an incorrect analysis if the slurry wear behavior of the rubber vulcanizate was estimated by the conventional abrasion tests, which are operated under dry conditions.

Nonnegative Matrix Factorization Based Direction-of-Arrival Estimation of Multiple Sound Sources Using Dual Microphone Array (이중 마이크로폰을 이용한 비음수 행렬분해 기반 다중음원 도래각 예측)

  • Jeon, Kwang Myung;Kim, Hong Kook;Yu, Seung Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • This paper proposes a new nonnegative matrix factorization (NMF) based direction-of-arrival (DOA) estimation method for multiple sound sources using a dual microphone array. First of all, sound signals coming from the dual microphone array are segmented into consecutive analysis frames, and a steered-response power phase transform (SRP-PHAT) beamformer is applied to each frame so that stereo signals of each frame are represented in a time-direction domain. The time-direction outputs of SRP-PHAT are stored for a pre-defined number of frames, which is referred to as a time-direction block. Next, In order to estimate DOAs robust to noise, each time-direction block is normalized along the time by using a block subtraction technique. After that, an unsupervised NMF method is applied to the normalized time-direction block in order to cluster the directions of each sound source in a multiple sound source environments. In particular, the activation and basis matrices are used to estimate the number of sound sources and their DOAs, respectively. The DOA estimation performance of the proposed method is evaluated by measuring a mean absolute error (MAE) and the standard deviation of errors between the oracle and estimated DOAs under a three source condition, where the sources are located in [$-35{\circ}$, 5m], [$12{\circ}$, 4m], and [$38{\circ}$, 4.m] from the dual microphone array. It is shown from the experiment that the proposed method could relatively reduce MAE by 56.83%, compared to a conventional SRP-PHAT based DOA estimation method.

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

Periodic Mesh Generation for Composite Structures using Polyhedral Finite Elements (다면체 유한요소를 이용한 복합재 구조의 주기 격자망 생성)

  • Sohn, Dongwoo;Park, Jong Youn;Cho, Young-Sam;Lim, Jae Hyuk;Lee, Haengsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.239-245
    • /
    • 2014
  • Finite element modeling of composite structures may be cumbersome due to complex distributions of reinforcements. In this paper, an efficient scheme is proposed that can generate periodic meshes for the composite structures. Regular meshes with hexahedral finite elements are first prepared, and the elements are then trimmed to fit external surfaces of reinforcements in the composite structures. The trimmed hexahedral finite elements located at interfaces between the matrix and the reinforcements correspond to polyhedral finite elements, which allow an arbitrary number of nodes and faces in the elements. Because the trimming process is consistently conducted by means of consistent algorithms, the elements of the reinforcements are automatically compatible with those of the matrices. With the additional consideration of periodicity of reinforcements in a representative volume element(RVE), the proposed scheme provides periodic meshes in an efficient manner, which are compatible for each pair of periodic boundaries of the RVE. Therefore, periodic boundary conditions for the RVE are enforced straightforwardly. Numerical examples demonstrate the effectiveness of the proposed scheme for finite element modeling of complex composite structures.

Modeling the Controllable Parameters of Radon Environment System with Dose Sensitivity Analysis (실내 라돈환경계의 선량감도분석에 의한 제어매개변수 모델링)

  • Zoo, Oon-Pyo;Chang, Yi-Young;Kim, Kern-Joong
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.41-54
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of indoor radon $(^{222}Rn)$ and its decay products (Rn-D) by applying the input~output linear system theory. Physical behaviors of $^{222}Rn\;&\;Rn-D$ were analyzed in terms of $(^{222}Rn)$ gas -generation, -migation and -infiltration to indoor environments, and the performance output-function, i. e. mean dose equivalent to Tracho-Bronchial (TB) lung region, was assessed to the following extented ranges of the controllable paramenters; a) the ventilation rate $constant({\lambda}_v)\;:\;0{\sim}50[h^{-l}].\;b)$ the attachment rate $constant({\lambda}_a)\;:\;0{\sim}500[h^{-l}].\;c)$ the unattached-deposition rate constant (${\lambda}^u_d)\;:\;0-50[h-l]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations; a) indoor $^{222}Rn\;&\;Rn-D$ Behaviour; Jacobi-Porstendoerfer-Bruno model.

  • PDF

Factors Affecting Asthma and Atopic Dermatitis in Korean Children: A Population-based Cross-sectional Survey (부모의 특성을 포함한 아동기 천식과 아토피 피부염의 영향요인: 제5기 2차년도(2011년) 국민건강영양조사 자료를 중심으로)

  • Yi, Yunjeong;Kim, Jisoo
    • Child Health Nursing Research
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate factors affecting childhood asthma and atopic dermatitis. Methods: For this study, data for 1,170 children (1-11 years) from the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V-2, 2011) were analyzed. First correlation matrices were computed to test the normality of every data set and then to be in accordance with the real demographic composition, data were added weight before being analyzed. Results: The child with asthma of a three generation family (OR=3.91, 95% CI [1.33, 11.45], p=.013) compared with a two generation family showed higher asthma development, and maternal asthma (OR=9.71, 95% CI [2.66, 35.40], p=.001) showed higher asthma development in child. The only factor affecting atopic dermatitis was parental perceptions of child health: poor (OR=3.40, 95% CI [1.29, 8.98], p=.014). Conclusion: These results suggest that childhood asthma and atopic dermatitis are both affected by parental perceptions of child health. Accordingly, management and support programs for children who have asthma and/or atopic dermatitis and their families should be comprehensive and also give attention to any other health problems because health perception represents quality of life.

Interfacial and Surface Energies Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites using Micromechanical Technique and Contact Angle Measurement (미세역학시험법과 접촉각 측정을 통한 변형된 Jute와 Hemp섬유 강화 Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) 복합재료의 계면 및 표면에너지 평가)

  • Park, Joung-Man;Son, Tran Quang;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • Interfacial evaluation of the untreated and treated Jute and Hemp fibers reinforced different matrix polypropylene-maleic anhydride polypropylene copolymer (PP-MAPP) composites were investigated by micromechanical technique and dynamic contact angle measurement. For the statistical tensile strength of Jute and Hemp fibers, bimodal Weibull distribution was fitted better than the unimodal distribution. The acid-base parameter on the interfacial shear strength (IFSS) of the natural fiber composites was characterized by calculating the work adhesion, $W_a$. The effect of alkaline, silane coupling agent on natural fibers were obtained with changing MAPP content in PP-MAPP matrices. Alkaline treated fibers made the surface energy to be higher due to removing the weak boundary layers and thus increasing surface area, whereas surface energy of silane treated Jute and Hemp fibers decreased due to blocked high energy sites. MAPP in the PP-MAPP matrix caused the surface energy to increase due to introduced acid-base sites. Microfailure modes of two natural fiber composites were observed clearly differently due to different tensile strength of natural fibers.

  • PDF

Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate (Mesoporous Titanium Oxo-Phosphate에 의한 살균제 Chlorothalonil의 광분해)

  • Choi, Choong-Lyeal;Kim, Byung-Ha;Lee, Byung-Mook;Choi, Jyung;Rhee, In-Koo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.284-289
    • /
    • 2003
  • Titanium mesoporous materials have received increasing attention as a new photocatalyst in the field for photocatalytic degradation of organic compounds. The photocatalytic degradation of chlorothalonil by mesoporous titanium oxo-phoswhate (Ti-MCM) was investigated in aqueous suspension for comparison with $TiO_2$, (Degussa, P25) using as an effective photocatalyst of organic pollutants. Mesoporous form of titanium Phosphate has been prepared by reaction of sulfuric acid and titanium isopropoxide in the presence or n-hexadecyltrimethylammonium bromide. The XRD patterns of Ti-MCM are hexagonal phases with d-spacings of 4.1 nm. Its adsorption isotherm for chlorothalonil reached at reaction equilibrium within 60 min under dark condition with 28% degradation efficiency. The degradation ratio of chlorothalonil after 9 hours under the UV radiation condition (254 nm) exhibited 100% by Ti-MCM and 88% by $TiO_2$. However, these degradation kinetics in static state showed a slow tendency compared to that of stirred state because of a low contact between titanium matrices and chlorothalonil. Also, degradation efficiency of chlorothalonil was increased with decreasing initial concentration and with increasing pH of solution. As results of this study, it was clear that mesoporous titanium oxo-phosphate with high surface area and crystallinity could be used to photo- catalytic degradation of various organic pollutants.