• Title/Summary/Keyword: Matlab program

Search Result 443, Processing Time 0.023 seconds

S/W Development of Flying Qualities Evaluation in Virtual Flight Test using MATLAB GUI (GUI 기반 가상모의시험 비행성 평가 S/W 개발)

  • Cho, Seung-Gyu;Rhee, Ihn-Seok;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • In an evaluation process of aircraft flying qualities, a clear and concise application interface is important since an evaluation process requires numerous repeated evaluation. This flight evaluation program have implemented efficient flight evaluation user interface along with changed trim condition interface and composed of comprehensive evaluation interface have mounted all automated FQ evaluation modules that was selected to be compose of 14 items in respect of an unmanned fixed-wing aircraft. Accordingly when it is necessary to design the flight control system as well as to develop a FQ considered aircraft, this S/W can be utilized as a tool that is a useful test evaluation S/W with scalability and enable to reduce the time and the cost of verification and evaluation process.

A Study on an Optimal Plant Design Collaboration System Using a Design Structure Matrix (Design Structure Matrix를 활용한 플랜트 설계의 최적 협업 체계에 관한 연구)

  • Yun, Jong Yi;Kim, Jeong Hwan;Kang, Sang Hyeok;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.337-346
    • /
    • 2013
  • A design collaboration system for a plant project is a set of complicated multidisciplinary processes in which a large number of various engineering fields are involved. Each subsystem is related to each other as they depend on information that other subsystems create, which leads to inefficient design iterations. This study presents an optimal design collaboration system for a plant project using Design Structure Matrix (DSM). Data regarding design subsystems, parameters, etc. were obtained by expert surveys and workshops. An automatic analysis program for DSM was developed using Visual Basic Application and Matlab to provide a partitioned DSM. A case study was conducted on a furnace project; consequently, the optimal design collaboration system with five crucial iteration groups was derived.

Kinematic Difference between the Lower Limb Joints and the Lower Extremities Given Elderly Women's Walking through the Lower-limb Resistance Exercises (하지 저항운동을 통한 여성고령자 보행 시 하지관절 및 분절의 운동학적 차이)

  • Seo, Se-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.364-375
    • /
    • 2009
  • The purpose of this study is to offer basic data for the fall prevention by analyzing the kinematic difference between the lower limb joints and the lower extremities in elderly people's walking given the lower-limb resistance exercises. For this, three-dimensional image analysis was carried out by selecting 7 elderly women from over 70s to under 80 years old. To obtain the three-dimensional location coordinates in the lower limb joints and the lower extremities, it shot with 100Hz/s by using MCU(Qualisys, Sweden) camera. The shot image gained raw data on the location coordinates by using QTM(Qualisys, Sweden). As a result of calculating three-dimensional angle by using program of Matlab 6.5, the following conclusions were obtained. Flexion and extension in the thigh and the lower-leg extremities were indicated to be big in motion of flexion after exercising at E5. Foot segment indicated statistical difference while showing eversion at E4. Knee joints showed flexion at E4 after exercising. Ankle joints showed statistical difference while indicating motion in inversion at E3 and in eversion at E4(p<.05).

A Fire Detection System Using Fuzzy Logic with Input Variables of Temperature and Smoke Density (열과 연기농도를 입력변수로 갖는 퍼지로직을 이용한 화재감지시스템)

  • Hong Sung-Ho;Kim Doo-Hyun;Kim Sang-Chul
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.42-51
    • /
    • 2004
  • This paper presents a study on the analysis of fire detection system using fuzzy logic with input variables of temperature and smoke density. The input variables for the fuzzy logic algorithm are measured by fire experiment of small scale with temperature detector and smoke detector. The antecedent part of fuzzy rules consists of temperature and smoke density, and the consequent part consists of fire possibility. Also the triangular fuzzy membership function is chosen for input variables and fuzzy rules to simplify computation. In order to calculate fuzzy values of such fuzzy system, a computer program is developed with Matlab based on graphics user interface. The experiment was conducted with paper and ethanol to simulate flaming fire and with plastic and sawdust to model smoldering fire. The results showed that the fire detection system presented here was able to diagnose fire very precisely. With the help of algorithms using fuzzy logic we could distinguish whether fire or not.

Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller (자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어)

  • Lee, Young-Soo;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2016
  • This paper describes an accurate and stable current control method of switched reluctance motors(SRMs), which have recently attracted considerable wide attention owing to their favorable features, such as high performance, high durability, structural simplicity, low cost, etc. In most cases, the PI controllers(PICC) have been used mostly for the current control of electric motors because their algorithm and selection of controller gain are relatively simpler compared to other controllers. On the other hand, the PI controller requires an adjustment of the controller gains for each operating point when nonlinear system parameters change rapidly. This paper presents a stable current control method of an SRM using self-tuning fuzzy current controller(STFCC) under nonlinear parameter variation. The performance of the considered method is validated via a dynamic simulation of the current controlled SRM drive using Matlab/Simulink program.

A Study on the Method of Representing Anchorage Using Occupancy Rate - Simulation Based on Ulsan E Anchorage - (정박지 점유율을 이용한 집단 정박지 면적 제시 방법 연구 - 울산항 E 정박지를 대상으로 시뮬레이션 -)

  • Park, Jun-Mo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.167-173
    • /
    • 2016
  • This study aims to present methodology for determining the appropriate anchorage area through the simulation reproduces the maritime transport environment, and analysis of the adequacy of anchorage applied at Ulsan E anchorage, suggests the formula of anchorage occupancy rater per hour and necessary anchorage area for this purpose. And configured simulation algorithm and modeling using MATLAB program, and applied Ulsan E anchorage, compared anchorage area with anchorage occupancy rate per hour. As a result, E1 necessary anchorage is 1.41 times, E2 necessary anchorage is 0.90 times and E3 necessary anchorage is 0.96 times compared to total anchorage area. If the result of adequacy analysis of anchor area reflect anchorage design criteria, it is determined to be helpful for the safety of the vessel using the anchorage.

A case study on a tunnel back analysis to minimize the uncertainty of ground properties based on artificial neural network (인공신경망 기법에 근거한 지반물성치의 불확실성을 최소화하기 위한 터널 역해석 사례연구)

  • You, Kwang-Ho;Song, Won-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.37-53
    • /
    • 2012
  • There is considerable uncertainty in ground properties used in tunnel designs. In this study, a back analysis was performed to find optimal ground properties based on the artificial neural network facility of MATLAB program of using tunnel monitoring data. Total 81 data were constructed by changing elastic modulus and coefficient of lateral pressure which have great influence on tunnel convergence. A sensitivity analysis was conducted to establish an optimal training model by varying the number of hidden layers, the number of nodes, learning rate, and momentum. Meanwhile, the optimal training model was selected by comparing MSE (Mean Squared Error) and coefficient of determination ($R^2$) and was used to find the correct elastic moduli of layers and the coefficient of lateral pressure. In future, it is expected that the suggested method of this study can be applied to determine the optimum tunnel support pattern under given ground conditions.

Fundamental Acoustic Investigation of Korean Male 5 Monophthongs (한국 남성의 단모음 [아, 에, 이, 오, 우]에 대한 음향음성학적 기반연구)

  • Choi, Yae-Lin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.373-377
    • /
    • 2010
  • Numerous quantitative and qualitative studies have already been published related to English vowels. However, only minimal amounts of studies based on the acoustic analysis of Korean vowels have been accomplished. The purpose of this study is to obtain sufficient quantitative data based on the acoustic aspects of Korean vowels produced by males between the ages of 20s and 30s. A total of 31 males in their 20s and 30s produced the five fundamental vowels /a, e, i, o, u/ by repeating each of them three times in the standard Korean dialect. Such speech productions were recorded with 'Cool edit' and F1, F2, F3, F4 were extracted through the MATLAB acoustic analysis program. Results indicated that the overall patterns of formants were similar to previous studies, except that the formant levels of F1 and F2 of the vowels produced in this study were generally lower than that in previous studies. Future studies need to focus on obtaining vowel data by considering other factors such as age and other speech materials.

Computation of the Critical Lengths of the Vertical Grounding Electrode in Multi-Layered Soil Structures (다층 대지구조에서 수직 접지전극의 임계길이 산정)

  • Kim, Ki-Bok;Joe, Jeong-Hyeon;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • The grounding impedance is not lowered by expanding the dimension of the grounding electrode, and the length of grounding electrode which shows the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical Length. In this paper, a new distributed parameter circuit model considering the condition of the multi-layered soil structures was proposed, and the grounding impedance and critical length of the vertical grounding electrode were analyzed by using the newly proposed simulation model and the MATLAB program. As a consequence, it was found that the effect of the soil structure on the frequency-dependent grounding impedance and critical length of the vertical grounding electrode is significant. It is desirable to consider the soil structure in optimal design of the grounding system.

Drowsy Driving Detection Algorithm Using a Steering Angle Sensor And State of the Vehicle (조향각센서와 차량상태를 이용한 졸음운전 판단 알고리즘)

  • Moon, Byoung-Joon;Yeon, Kyu-Bong;Lee, Sun-Geol;Hong, Seung-Pyo;Nam, Sang-Yep;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.30-39
    • /
    • 2012
  • An effective drowsy driver detection system is needed, because the probability of accident is high for drowsy driving and its severity is high at the time of accident. However, the drowsy driver detection system that uses bio-signals or vision is difficult to be utilized due to high cost. Thus, this paper proposes a drowsy driver detection algorithm by using steering angle sensor, which is attached to the most of vehicles at no additional cost, and vehicle information such as brake switch, throttle position signal, and vehicle speed. The proposed algorithm is based on jerk criterion, which is one of drowsy driver's steering patterns. In this paper, threshold value of each variable is presented and the proposed algorithm is evaluated by using acquired vehicle data from hardware in the loop simulation (HILS) through CAN communication and MATLAB program.