• Title/Summary/Keyword: Matlab/Simulink Dynamic Model

Search Result 135, Processing Time 0.041 seconds

Study on Concurrent Simulation Technique of EPS and A Full Car Model (EPS와 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bong-Choon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.785-787
    • /
    • 2010
  • It is well known that most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the Electric Power System(EPS) or Motor Driven Power System(MDPS) has widely equipped in passenger vehicles. In this research the concurrent simulation technique for an EPS system with MATLAB/SIMULINK and a full vehicle model has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for SUV. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

  • PDF

Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind (횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계)

  • Lim, Hyeongho;Joa, Eunhyek;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

Dynamics Modeling of Polymer Electrolyte Membrane Fuel Cell (PEMFC) for Optimal Design of Power Conditioning System (PCS) (PCS 최적설계를 위한 고분자 전해질 연료전지의 동특성 모델링)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1563-1571
    • /
    • 2008
  • In this paper, dynamics modeling of a PEMFC is performed by electro-chemical equations. The developed PEMFC simulation model is implemented using MATLAB Simulink in order to design an optimal PCS for fuel cell systems. In addition, by use of the developed model as an input source of PCS, the validity of the proposed dynamic characteristic model of the PEMFC is verified by various simulation and experimental results.

Modeling and Intelligent control for Wastewater treatment process (수처리공정의 모델링과 지능제어의 적용)

  • Cheon, Seong-Pyo;Kim, Bong-Chul;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2333-2335
    • /
    • 2000
  • The main motivation of this research is to develop an intelligent control strategy for Activated Sludge Process(ASP). ASP is a complex and nonlinear dynamic system because of the characteristic of a wastewater, the change of an influent flow rate, weather conditions, and etc. The mathematical model of ASP also includes uncertainties which are ignored or not considered by process engineer or controller designer. The ASP is generally controlled by a PID controller that consists of fixed proportional, integral, and derivative gain values. The PID gains can be adjusted by the expert in the ASP. The ASP model based on Matlab$^{(R)}$5.3/Simulink$^{(R)}$3.0 is developed in this paper. Various control methods are applied to the ASP model and the control results are disscussed. Three control methods are designed and tested: conventional PID controller, fuzzy logic control approach to modify setpoints, and fuzzy-PID control method.

  • PDF

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

Modeling and Simulation of a Gas Turbine Engine for Control of Mechanical Propulsion Systems (기계식 추진 시스템 제어를 위한 가스터빈 엔진 모델링 및 시뮬레이션)

  • Back, Kyeongmi;Huh, Hwanil;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, performance modeling and simulation of a gas turbine engine, a constituent module, was performed for the integrated control of the CODOG structure, mechanical propulsion systems. The engine model used MATLAB/Simulink to facilitate integration with the host controller and other components, and was configured to enable input/output settings suitable for the system configuration and purpose. In general, engine manufacturers do not provide performance data for the engine and components. Therefore, as a modeling method for a gas turbine, a CMF method that obtains performance data by scaling the map of components was applied. Using the generated model and simulation program, steady-state and dynamic simulation analysis tests were performed, and reliability within 5% of the maximum error was secured for the final output of power.

Simulation Study for a UV Water Disinfection Unit Powered by a Photovoltaic System

  • Riahi, Said;Mami, Abdelkader;Minzu, Viorel
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.175-182
    • /
    • 2022
  • This work presents a simulation model for a specific UV disinfection system (UVDS) powered by a Photovoltaic System. The global UVDS also includes the electronic converters, Electronic Ballast, UV Lamp and Motor Pump. The equations that model the physical components' behaviour are connected to obtain a dynamic global model. The latter is converted in a Simulink/Matlab model, which allows to carry out simulation series concerning the entire UVDS. The physical parameters: the irradiation G and the temperature T, are considered as inputs. series of measurements carried out in order to show how these parameters affect the current, the voltage of the PVs and especially the value of the current of the UV lamp, on the other hand a study on the behavior and the evolution of the parameters of the motor pump such as the armature current, motor torque, speed of rotation and the water flow. The purpose of all this is to realize how important are the two parameters concerning the lamp current and the water flow because they are two very important factors to keep an adequate water quality.

Simulation and Experiment of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션 및 실험)

  • Kwon, Sun-Hyung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2013
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. The simulation based on MATLAB/SIMULINK has validated at the transient state of the PMSG and an experiment using 3kW simulator has validated the LVRT control.

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

Simulation of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션)

  • Kwon, Sun-Hyung;Song, Seung-Ho;Choi, Ju-Yeop;Jeong, Seung-Gi;Choy, Ick
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.242-244
    • /
    • 2011
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. A Matlab/Simulink is used to investigate the response during the transient state.

  • PDF