• Title/Summary/Keyword: Mathematics Curriculum

Search Result 1,590, Processing Time 0.028 seconds

An analysis on the secondary students' conceptualization level of the formula of quadratic equation based on Sfard's reification theory (Sfard의 구상화(Reification) 이론에 근거한 중·고등학생의 이차방정식 근의 공식 개념 형성 수준 분석)

  • Chang, Hyun Suk;Lee, Bongju
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.231-246
    • /
    • 2018
  • In this paper, we applied Sfard's reification theory to analyze the secondary students' level of conceptualization with regard to the formula of quadratic equation. Through the generation and development of mathematical concepts from a historical perspective, Sfard classified the formulation process into three stages of interiorization, condensation, and reification, and proposed levels of formulation. Based on this theory, we constructed a test tool reflecting the reversibility of the nature of manipulation of Piaget's theory as a criterion of content judgement in order to grasp students' conceptualization level of the formula of quadratic equation. By applying this tool, we analyzed the conceptualization level of the formula of quadratic equation of the $9^{th}$ and $10^{th}$ graders. The main results are as follows. First, approximately 45% of $9^{th}$ graders can not memorize the formula of quadratic equation, or even if they memorize, they do not have the ability of accurate calculation to apply for it. Second, high school curriculum requires for students to use the formula of the quadratic equation, but about 60% of $10^{th}$ graders have not reached at the level of reification that they can use the formula of quadratic equation. Third, as a result of imaginarily correcting the error of the previous concept, there was a change in the levels of $9^{th}$ graders, and there was no change in $10^{th}$ graders.

The Research on Pedagogical Content Knowledge(PCK) Focused on Instructional Consulting for Secondary Beginning Teachers (내용교수지식(PCK)에 기초한 수업컨설팅에 관한 연구 - 수학 초임교사의 사례를 중심으로-)

  • Choe, Seung-Hyun;Hwang, Hye-Jeang
    • School Mathematics
    • /
    • v.11 no.3
    • /
    • pp.369-387
    • /
    • 2009
  • Recently there has been a high request for support for teachers' professional development and quality control to meet the demand of educational policy to introduce teacher evaluation, master teacher status, incentives for teacher competency, etc. It has been suggested that reeducation and support for professional development would be more effective to beginning teachers with a high developmental potential than to experienced teachers with routinized instruction. Since 2005, KICE-TLC has conducted research on the development of teacher supporting programs such as teaching consultation and pedagogical content knowledge(PCK) in school subjects. In line with the current education policy and previous research by KICE, this research has been conducted to meet the need for novice teacher induction by developing consulting program focused on PCK. The goal of this research was to (1) explore the in-depth meaning of PCK in light of teaching consultation, (2) conduct a preliminary study on how to develop teaching consulting programs for secondary beginning teachers, (3) develop teaching consulting programs focused on pedagogical content knowledge (PCK), and (4) suggest implications for educational policy regarding pre-service and in-service teachers' continuing professional development and support.

  • PDF

An analysis of Mathematical Knowledge for Teaching of statistical estimation (통계적 추정을 가르치기 위한 수학적 지식(MKT)의 분석)

  • Choi, Min Jeong;Lee, Jong Hak;Kim, Won Kyung
    • The Mathematical Education
    • /
    • v.55 no.3
    • /
    • pp.317-334
    • /
    • 2016
  • Knowledge and data interpretation on statistical estimation was important to have statistical literacy that current curriculum was said not to satisfy. The author investigated mathematics teachers' MKT on statistical estimation concerning interpretation of confidence interval by using questionnaire and interview. SMK of teachers' confidence was limited to the area of textbooks to be difficult to interpret data of real life context. Most of teachers wrongly understood SMK of interpretation of confidence interval to have influence upon PCK making correction of students' wrong concept. SMK of samples and sampling distribution that were basic concept of reliability and confidence interval cognized representation of samples rather exactly not to understand importance and value of not only variability but also size of the sample exactly, and not to cognize appropriateness and needs of each stage from sampling to confidence interval estimation to have great difficulty at proper teaching of statistical estimation. PCK that had teaching method had problem of a lot of misconception. MKT of sample and sampling distribution that interpreted confidence interval had almost no relation with teachers' experience to require opportunity for development of teacher professionalism. Therefore, teachers were asked to estimate statistic and to get confidence interval and to understand concept of the sample and think much of not only relationship of each concept but also validity of estimated values, and to have knowledge enough to interpret data of real life contexts, and to think and discuss students' concepts. So, textbooks should introduce actual concepts at real life context to make use of exact orthography and to let teachers be reeducated for development of professionalism.

1st Graders' Achievements Who have Experienced Learning and Teaching Practices in Learner-Centered Classroom during First School Year (학습자 중심 수학 수업을 1년간 받은 1학년 학생들의 학업 성취도)

  • Kim, Jin-Ho
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.11 no.1
    • /
    • pp.23-42
    • /
    • 2007
  • Learners who have taken learner-centered instruction is expected to construct conceptually mathematical knowledge which is. If so, they can have some ability to solve problems they are confronted with in the first time. To know this, First graders who have been in learner-centered instruction during 1 school year was given 7+52+186 which usually appears in the national curriculum for 3rd grade. According to the results, most of them have constructed the logic necessary to solve the given problem to them, and actually solve it. From this, it can be concluded that first, even though learners are 1st graders they can construct mathematical knowledge abstractly, second, they can apply it to the new problem, and third consequently they can got a good score in a achievement test.

  • PDF

A Study on the Effective Use of Tangrams for the Mathematical Justification of the Gifted Elementary Students (초등수학영재의 수학적 정당화를 위한 칠교판 활용방안 연구)

  • Hwang, Jinam
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.589-608
    • /
    • 2015
  • The inquiry subject of this paper is the number of convex polygons one can form by attaching the seven pieces of a tangram. This was identified by two mathematical proofs. One is by using Pick's Theorem and the other is 和々草's method, but they are difficult for elementary students because they are part of the middle school curriculum. This paper suggests new methods, by using unit area and the minimum area which can be applied at the elementary level. Development of programs for the mathematically gifted elementary students can be composed of 4 class times to see if they can prove it by using new methods. Five mathematically gifted 5th grade students, who belonged to the gifted class in an elementary school participated in this program. The research results showed that the students can justify the number of convex polygons by attaching edgewise seven pieces of tangrams.

Comparative Study between Mathematically Gifted Elementary Students and Non-Gifted Students in Communication Skills and Self-Directed Learning Ability (초등수학영재와 일반학생의 의사소통 능력 및 자기주도적 학습능력 비교)

  • Lee, Hye Ryeong;Choi, Jae Ho
    • School Mathematics
    • /
    • v.15 no.3
    • /
    • pp.585-601
    • /
    • 2013
  • The purpose of this study is to investigate the relationship of communication skills and self-directed learning ability between mathematically gifted elementary students and non-gifted students. The subjects include 126 mathematically gifted elementary students from gifted education centers and gifted classes in elementary schools in D Metropolitan City and 124 non-gifted students that were non categorized as gifted students or special children in the same city. Employed in the study were the tests of communication skills and self-directed learning ability. Through this study, there are notable differences in communication skills and self-directed learning ability between mathematically gifted students and non-gifted students. Thus, those communication skills and self-directed learning ability should be taken into account when organizing and running a curriculum. In addition, developing a program for mathematically gifted students, as well as in teaching and learning communication skills and self-directed learning ability sufficient to consider the interrelationships between.

  • PDF

Research on the Instructional Strategies to Foster Problem Solving Ability as Mathematical Subject Competency in Elementary Classrooms (초등학교 수업에서 수학 교과 역량으로서의 문제 해결 능력을 함양하기 위한 지도 방안 탐색)

  • Choi, Inyoung;Pang, JeongSuk
    • Education of Primary School Mathematics
    • /
    • v.21 no.3
    • /
    • pp.351-374
    • /
    • 2018
  • The purpose of this study is to support the understandings of teachers about the instructional strategies of collaborative problem solving and mathematical modeling as presented in the 2015 revised mathematics curriculum. For this, tasks of the Cubes unit from six grader's and lesson plans were developed. The specific problem solving processes of students and the practices of teachers which appeared in the classes were analyzed. In the course of solving a series of problems, students have formed a mathematical model of their own, modifying and complementing models in the process of sharing solutions. In particular, it was more effective when teachers explicitly taught students how to share and discuss problem-solving. Based on these results this study is expected to suggest implications on how to foster students' problem solving ability as mathematical subject competency in elementary classrooms.

Mathematical Creativity in the View of General Creativity Theory (창의성 이론을 통해 본 수학 창의성)

  • Kim, Pan-Soo
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.3
    • /
    • pp.465-496
    • /
    • 2008
  • With leadership and speciality, creativity is cutting a fine figure among major values of human resource in 21C knowledge-based society. In the 7th school curriculum much emphasis is put on the importance of creativity by pursuing the image of human being based on creativity based on basic capabilities'. Also creativity is one of major factors of giftedness, and developing one's creativity is the core of the program for gifted education. Doing mathematics requires high order thinking and knowledgeable understandings. Thus mathematical creativity is used as a measure to test one's flexibility, and therefore it is the basic tool for creativity study. But theoretical study for mathematical creativity is not common. In this paper, we discuss mathematical creativity applied to 6 approaches suggested by Sternberg and Lubart in educational theory. That is, mystical approaches, pragmatical approaches, psycho-dynamic approaches, cognitive approaches, psychometric approaches and scio-personal approaches. This study expects to give useful tips for understanding mathematical creativity and understanding recent research results by reviewing various aspects of mathematical creativity.

Action Research on Math Competencies-oriented Assessment of Integrated Instruction (수업과 통합한 수학 교과 역량 중심의 평가 실행 연구)

  • Kim, Yukyung
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2017
  • This research analyzed the cases of math competencies-oriented assessment, integrating assessment and instruction, which had been conducted in an elementary school whose assessment system involves frequent tests from a formative perspective on assessment. The research outcome is as follows: First, the competencies-oriented assessment of integrating instruction made possible for curriculum restructuring and competencies-oriented teaching, whereas more emphasis needs to be focused on the assessment feedback. Second, assessment on math competencies involves multiple dimensions; therefore, it needs to be managed to prevent problems arising due to overlap between different competencies. Third, though it has been identified that with evaluation it is possible to recognize and gradually improve the areas short of competency, more practical studies need to be conducted in this regard. Fourth, even with the fact that various types of evaluation ensure its fairness, make an accurate interpretation of the evaluation result before arriving at a comprehensive assessment.

  • PDF

An Analysis of the Discourse on the Length Concept in a Classroom for the Length of Space Curve (곡선의 길이 수업에서 길이 개념에 대한 담론 분석)

  • Oh, Taek-Keun
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.571-591
    • /
    • 2017
  • The purpose of this study is to understand the characteristics of mathematical discourse about the length in the class that learns the length of the curve defined by definite integral. For this purpose, this study examined the discourse about length by paying attention to the usage of the word 'length' in the class participants based on the communicative approach. As a result of the research, it was confirmed that the word 'length' is used in three usages - colloquial, operational, and structural usage - in the process of communicating with the discourse participants. Particularly, each participant did not recognize the difference even though they used different usage words, and this resulted in ineffective communication. This study emphasizes the fact that the difference in usage of words used by participants reduces the effectiveness of communication. However, if discourse participants pay attention to the differences of these usages and recognize that there are different discourses, this study suggests that meta - level learning can be possible by overcoming communication discontinuities and resolving conflicts.