• Title/Summary/Keyword: Mathematical procedure

Search Result 524, Processing Time 0.029 seconds

Use of design optimization techniques in solving typical structural engineering related design optimization problems

  • Fedorik, Filip;Kala, Jiri;Haapala, Antti;Malaska, Mikko
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1121-1137
    • /
    • 2015
  • High powered computers and engineering computer systems allow designers to routinely simulate complex physical phenomena. The presented work deals with the analysis of two finite element method optimization techniques (First Order Method-FOM and Subproblem Approximation Method-SAM) implemented in the individual Design Optimization module in the Ansys software to analyze the behavior of real problems. A design optimization is a difficult mathematical process, intended to find the minimum or maximum of an objective function, which is mostly based on iterative procedure. Using optimization techniques in engineering designs requires detailed knowledge of the analyzed problem but also an ability to select the appropriate optimization method. The methods embedded in advanced computer software are based on different optimization techniques and their efficiency is significantly influenced by the specific character of a problem. The efficiency, robustness and accuracy of the methods are studied through strictly convex two-dimensional optimization problem, which is represented by volume minimization of two bars' plane frame structure subjected to maximal vertical displacement limit. Advantages and disadvantages of the methods are described and some practical tips provided which could be beneficial in any efficient engineering design by using an optimization method.

Microwave Signal Spectrum Broadening System Based on Time Compression

  • Kong, Menglong;Tan, Zhongwei;Niu, Hui;Li, Hongbo;Gao, Hongpei
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • We propose and experimentally demonstrate an all-optical radio frequency (RF) spectrum broadening system based on time compression. By utilizing the procedure of dispersion compensation values, the frequency domain is broadened by compressing the linear chirp optical pulse which has been multiplexed by the radio frequency. A detailed mathematical description elucidates that the time compression is a very preferred scheme for spectrum broadening. We also report experimental results to prove this method, magnification factor at 2.7, 8 and 11 have been tested with different dispersion values of fiber, the experimental results agree well with the theoretical results. The proposed system is flexible and the magnification factor is determined by the dispersion values, the proposed scheme is a linear system. In addition, the influence of key parameters, for instance optical bandwidth and the sideband suppression ratio (SSR), are discussed. Magnification factor 11 of the proposed system is demonstrated.

Optimum Risk-Adjusted Islamic Stock Portfolio Using the Quadratic Programming Model: An Empirical Study in Indonesia

  • MUSSAFI, Noor Saif Muhammad;ISMAIL, Zuhaimy
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.839-850
    • /
    • 2021
  • Risk-adjusted return is believed to be one of the optimal parameters to determine an optimum portfolio. A risk-adjusted return is a calculation of the profit or potential profit from an investment that takes into account the degree of risk that must be accepted to achieve it. This paper presents a new procedure in portfolio selection and utilizes these results to optimize the risk level of risk-adjusted Islamic stock portfolios. It deals with the weekly close price of active issuers listed on Jakarta Islamic Index Indonesia for a certain time interval. Overall, this paper highlights portfolio selection, which includes determining the number of stocks, grouping the issuers via technical analysis, and selecting the best risk-adjusted return of portfolios. The nominated portfolio is modeled using Quadratic Programming (QP). The result of this study shows that the portfolio built using the lowest Value at Risk (VaR) outperforms the market proxy on a risk-adjusted basis of M-squared and was chosen as the best portfolio that can be optimized using QP with a minimum risk of 2.86%. The portfolio with the lowest beta, on the other hand, will produce a minimum risk that is nearly 60% lower than the optimal risk-adjusted return portfolio. The results of QP are well verified by a heuristic optimizer of fmincon.

Formulation for Shape Change Procedure of Single Prism Tensegrity Structure (단일 프리즘 텐세그리티 구조의 형상 변화 과정 해석을 위한 정식화)

  • Kim, Mi-Hee;Yang, Dae-Hyeon;Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.3-11
    • /
    • 2018
  • Since the tensegrity structure is flexible and variable, the study on the mobility to the tensegrity has been conducted. However, it is difficult to apply the tensegrity to the architecture field due to several limits. This paper describes the methodology for the analysis of the shape change process of single prism tensegrity structure as an initial study. To apply the tensegrity structure to the architectural field, the assemblage and mathematical formulation procedures of the single prism tensegrity structures are carried out. And single prism tensegrity are presented to the computational strategies for simulate the shape change of those structures. Next, the investigation of structural behaviors through various cases of target displacements is described. Also, the summary of these methods in algorithms is illustrated. As a result it is confirmed that the single prism tensegrity structure model converges 99% on average to a given target node by using the proposed algorithm. Therefore, it is confirmed that the proposed algorithm and program are suitable for shape change analysis of single prism tensegrity structure model.

Development of a framework to estimate the sea margin of an LNGC considering the hydrodynamic characteristics and voyage

  • You, Youngjun;Choi, Jin Woo;Lee, Dong Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.184-198
    • /
    • 2020
  • Decisions of the design speed, MCR, and engine capacity have been empirically made by assuming the value termed the sea margin. Due to ambiguity regarding the effect of some factors on the sea margin, the value has been commonly decided based on experience. To evaluate the value from a new viewpoint, it is necessary to construct an approach to estimate the sea margin through an objective procedure based on a physical and mathematical model. In this paper, a framework to estimate the actual sea margin of an LNGC based on the maneuvering equations of motion is suggested by considering the hull, propeller, rudder, and given sea route under wind and waves. The fouling effect is additionally quantified as the increase of total resistance by considering the re-docking period. The operation data is reviewed to amend the increase of the total resistance considering the speed loss of a ship. Finally, the factor of how much the resistance increases due to fouling is newly obtained for the vessel. Based on the comparison of the estimated sea margin with the empirical range of the sea margin, the constructed framework is regarded as feasible.

Study of Integrated Production-Distribution Planning Using Simulation and Genetic Algorithm in Supply Chain Network (공급사슬네트워크에서 시뮬레이션과 유전알고리즘을 이용한 통합생산분배계획에 대한 연구)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Many of companies have made significant improvements for globalization and competitive business environment The supply chain management has received many attentions in the area of that business environment. The purpose of this study is to generate realistic production and distribution planning in the supply chain network. The planning model determines the best schedule using operation sequences and routing to deliver. To solve the problem a hybrid approach involving a genetic algorithm (GA) and computer simulation is proposed. This proposed approach is for: (1) selecting the best machine for each operation, (2) deciding the sequence of operation to product and route to deliver, and (3) minimizing the completion time for each order. This study developed mathematical model for production, distribution, production-distribution and proposed GA-Simulation solution procedure. The results of computational experiments for a simple example of the supply chain network are given and discussed to validate the proposed approach. It has been shown that the hybrid approach is powerful for complex production and distribution planning in the manufacturing supply chain network. The proposed approach can be used to generate realistic production and distribution planning considering stochastic natures in the actual supply chain and support decision making for companies.

Power-based Side-Channel Analysis Against AES Implementations: Evaluation and Comparison

  • Benhadjyoussef, Noura;Karmani, Mouna;Machhout, Mohsen
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.264-271
    • /
    • 2021
  • From an information security perspective, protecting sensitive data requires utilizing algorithms which resist theoretical attacks. However, treating an algorithm in a purely mathematical fashion or in other words abstracting away from its physical (hardware or software) implementation opens the door to various real-world security threats. In the modern age of electronics, cryptanalysis attempts to reveal secret information based on cryptosystem physical properties, rather than exploiting the theoretical weaknesses in the implemented cryptographic algorithm. The correlation power attack (CPA) is a Side-Channel Analysis attack used to reveal sensitive information based on the power leakages of a device. In this paper, we present a power Hacking technique to demonstrate how a power analysis can be exploited to reveal the secret information in AES crypto-core. In the proposed case study, we explain the main techniques that can break the security of the considered crypto-core by using CPA attack. Using two cryptographic devices, FPGA and 8051 microcontrollers, the experimental attack procedure shows that the AES hardware implementation has better resistance against power attack compared to the software one. On the other hand, we remark that the efficiency of CPA attack depends statistically on the implementation and the power model used for the power prediction.

A comparative study of multi-objective evolutionary metaheuristics for lattice girder design optimization

  • Talaslioglu, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.417-439
    • /
    • 2021
  • The geometric nonlinearity has been successfully integrated with the design of steel structural system. Thus, the tubular lattice girder, one application of steel structural systems have already been optimized to obtain an economic design following the completion of computationally expensive design procedure. In order to decrease its computing cost, this study proposes to employ five multi-objective metaheuristics for the design optimization of geometrically nonlinear tubular lattice girder. Then, the employed multi-objective optimization algorithms (MOAs), NSGAII, PESAII, SPEAII, AbYSS and MoCell are evaluated considering their computing performances. For an unbiased evaluation of their computing performance, a tubular lattice girder with varying size-shape-topology and a benchmark truss design with 17 members are not only optimized considering the geometrically nonlinear behavior, but three benchmark mathematical functions along with the four benchmark linear design problems are also included for the comparison purpose. The proposed experimental study is carried out by use of an intelligent optimization tool named JMetal v5.10. According to the quantitative results of employed quality indicators with respect to a statistical analysis test, MoCell is resulted with an achievement of showing better computing performance compared to other four MOAs. Consequently, MoCell is suggested as an optimization tool for the design of geometrically nonlinear tubular lattice girder than the other employed MOAs.

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine;Meftah, Sid Ahmed;Youzera, Hadj;Ziane, Noureddine;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.253-268
    • /
    • 2021
  • The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.

A semi-analytical procedure for cross section effect on the buckling and dynamic stability of composite imperfect truncated conical microbeam

  • Zhang, Peng;Gao, Yanan;Moradi, Zohre;Ali, Yasar Ameer;Khadimallah, Mohamed Amine
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.371-388
    • /
    • 2022
  • The present study tackles the problem of forced vibration of imperfect axially functionally graded shell structure with truncated conical geometry. The linear and nonlinear large-deflection of the structure are considered in the mathematical formulation using von-Kármán models. Modified coupled stress method and principle of minimum virtual work are employed in the modeling to obtain the final governing equations. In addition, formulations of classical elasticity theory are also presented. Different functions, including the linear, convex, and exponential cross-section shapes, are considered in the grading material modeling along the thickness direction. The grading properties of the material are a direct result of the porosity change in the thickness direction. Vibration responses of the structure are calculated using the semi-analytical method of a couple of homotopy perturbation methods (HPM) and the generalized differential quadrature method (GDQM). Contradicting effects of small-scale, porosity, and volume fraction parameters on the nonlinear amplitude, frequency ratio, dynamic deflection, resonance frequency, and natural frequency are observed for shell structure under various boundary conditions.