The article deals with the perceptions of Mathematics as a language of pre-service teachers of Mathematics in a College of Education in Israel. The formal language of studying in the College of Education is Hebrew. The goals of the study were to examine the perceptions of pre-service teachers on the following issues: the language components involved in learning Mathematics, the basic cognitive skills required for learning Mathematics, and the perception of Mathematics as a language (PML). Findings indicated that due to new attitudes in mathematical training, pre-service teachers of Mathematics perceived Mathematics as a language regarding all language components.
Journal of Elementary Mathematics Education in Korea
/
v.9
no.2
/
pp.181-200
/
2005
The purpose of this thesis was to analyze communicational means of mathematical communication in perspective of languages and behaviors. Research questions were as follows; First, how are the characteristics of mathematical languages in communicating process of mathematical small group learning? Second, how are the characteristics of behaviors in communicating process of mathematical small group learning? The analyses of students' mathematical language were as follows; First, the ordinary language that students used was the demonstrative pronoun in general, mainly substituted for mathematical language. Second, students depended on verbal language rather than mathematical representation in case of mathematical communication. Third, quasi-mathematical language was mainly transformed in upper grade level than lower grade, and it was shown prominently in shape and measurement domain. Fourth, In mathematical communication, high level students used mathematical language more widely and initiatively than mid/low level students. Fifth, mathematical language use was very helpful and interactive regardless of the student's level. In addition, the analyses of students' behavior facts were as follows; First, students' behaviors for problem-solving were shown in the order of reading, understanding, planning, implementing, analyzing and verifying. While trials and errors, verifying is almost omitted. Second, in mathematical communication, while the flow of high/middle level students' behaviors was systematic and process-directed, that of low level students' behaviors was unconnected and product-directed.
The study is about the influence of literal, symbolic and graphics languages on mathematics reading. The results show that the scores of symbolic language volume are significantly lower than that of literal language volume. The abstractness of the mathematical symbols will not have a significant impact on the students with excellent mathematical academic, but as for the medium and poor students, abstract mathematics symbols will cause their cognitive impairment. Due to picture-superiority-effect, the test scores of the graphics language volume are significantly higher than that of the symbolic language volume. Graphics language will have a significant impact on the excellent and medium students, but has no impact on the poor students.
This study investigated the understanding level and the using level of mathematical language for middle school students in terms of Freudenthal' language levels. It was proved that the understanding level task developed by current study for geometric concept had reliability and validity, and that there was the hierarchy of levels on which students understanded mathematical language. The level that students used in explaining mathematical concepts was not interrelated to the understanding level, and was different from answering the right answer according to the sorts of tasks. And, the level of mathematical language that was understood easily as students' thought, was the third level of the understanding levels. Mathematics teachers should consider the students' understanding level and using level, and give students the tasks which students could use their mathematical language confidently.
O.W. Kwon;J.H. Shin;Y.A. Seo;S.J. Lim;J. Heo;K.Y. Lee
Electronics and Telecommunications Trends
/
v.38
no.6
/
pp.1-11
/
2023
Large language models seem promising for handling reasoning problems, but their underlying solving mechanisms remain unclear. Large language models will establish a new paradigm in artificial intelligence and the society as a whole. However, a major challenge of large language models is the massive resources required for training and operation. To address this issue, researchers are actively exploring compact large language models that retain the capabilities of large language models while notably reducing the model size. These research efforts are mainly focused on improving pretraining, instruction tuning, and alignment. On the other hand, chain-of-thought prompting is a technique aimed at enhancing the reasoning ability of large language models. It provides an answer through a series of intermediate reasoning steps when given a problem. By guiding the model through a multistep problem-solving process, chain-of-thought prompting may improve the model reasoning skills. Mathematical reasoning, which is a fundamental aspect of human intelligence, has played a crucial role in advancing large language models toward human-level performance. As a result, mathematical reasoning is being widely explored in the context of large language models. This type of research extends to various domains such as geometry problem solving, tabular mathematical reasoning, visual question answering, and other areas.
It would have a trouble to communicate mathematically without an appropriate use of mathematical language. Therefore it is necessary to form mathematics classroom culture to encourage students to use mathematical language precisely. A four-month teaching experiment in a 4th grade mathematics class was conducted focused the accurate use of mathematical language. In the course of the teaching experiment, children became more careful to use their language precisely. The use of demonstrative pronouns such as this or that as well as the use of inaccurate or wrong expressions was diminished. Children became to use much more mathematical symbols and terms instead of their imprecise expressions. The result of the experiment suggests that the culture that encourage students to use mathematical language precisely can be formed in elementary mathematics classroom.
This study explores the relations between mathematics and the natural human language. At the very outset, a general definition of language was, given while it was attempted to make some comparisons between the words of natural language and mathematical symbols at that. Besides, the occupation of natural language functions within mathematics was handled. Consequently, it was tried to manifest that the language of mathematics enjoys the features of natural language as well. Mathematics makes use of many functional and structural features. The fact that fundamental ingredient of mathematics is symbols does not change this reality.
Communicating about mathematics is an essential component in learning mathematics and is a key standard for successful learning in a mathematics classroom using stories and storytelling as a catalyst to mathematics instruction. This, however, can make learning math for students with language deficiencies since they are working toward mastering both basic language proficiency as well as the specialized language needed for mathematics. This is a particular concern because the number of students of multicultural families is rapidly increasing. In this paper, we discuss the challenges and complexities of language-deficient students learning math in a classroom where communication is a key standard for successful learning, and suggest implications for teaching, by presenting an USA elementrny teacher's scaffolding to make reading and solving word problems less intimidating for her language learner students as well as native speaking students.
This study was aimed to examine problem-solving ability of fifth graders on two types of mathematical essay problems, and to analyze the process of mathematical justification in solving the essay problems. For this purpose, a total of 14 mathematical essay problems were developed, in which half of the items were single tasks and the other half were data-provided tasks. Sixteen students with higher academic achievements in mathematics and the Korean language were chosen, and were given to solve the mathematical essay problems individually. They then were asked to justify their solution methods in groups of 4 and to reach a consensus through negotiation among group members. Students were good at understanding the given single tasks but they often revealed lack of logical thinking and representation. They also tended to use everyday language rather than mathematical language in explaining their solution processes. Some students experienced difficulty in understanding the meaning of data in the essay problems. With regard to mathematical justification, students employed more internal justification by experience or mathematical logic than external justification by authority. Given this, this paper includes implications for teachers on how they need to teach mathematics in order to foster students' logical thinking and communication.
Journal of Elementary Mathematics Education in Korea
/
v.23
no.3
/
pp.305-321
/
2019
Rapid demographic changes such as international marriages and immigration have led to the transition of Korea to a multicultural society, thereby causing the need for education for multicultural students. In particular, there is a growing need to support Korean Language Learners (KLLs) who learn in Korean in their classrooms and whose native language is a foreign language. This study aims to adapt some teaching strategies of the SIOP model developed in the U.S. for English Language Learners(ELLs) to fit classroom situations in Korea and apply them to the Korean language learners to analyze the features of mathematical communication and to examine the possibility of a change in mathematical errors. Specifically, three KLLs in 5th grade participated in seven geometry lessons adapting some characteristics of SIOP model and then, their mathematical communication and mathematical errors were analyzed. The results of this study are expected to provide didactical implications for identifying characteristics of KLLs and for setting direction for teaching them mathematics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.