• Title/Summary/Keyword: Mathematical Modeling

Search Result 1,598, Processing Time 0.027 seconds

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Extracting the Distribution Potential Area of Debris Landform Using a Fuzzy Set Model (퍼지집합 모델을 이용한 암설지형 분포 가능지 추출 연구)

  • Wi, Nun-Sol;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.77-91
    • /
    • 2017
  • Many debris landforms in the mountains of Korea have formed in the periglacial environment during the last glacial stage when the generation of sediments was active. Because these landforms are generally located on steep slopes and mostly covered by vegetation, however, it is difficult to observe and access them through field investigation. A scientific method is required to reduce the survey range before performing field investigation and to save time and cost. For this purpose, the use of remote sensing and GIS technologies is essential. This study has extracted the potential area of debris landform formation using a fuzzy set model as a mathematical data integration method. The first step was to obtain information about the location of debris landforms and their related factors. This information was verified through field observation and then used to build a database. In the second step, we conducted the fuzzy set modeling to generate a map, which classified the study area based on the possibility of debris formation. We then applied a cross-validation technique in order to evaluate the map. For a quantitative analysis, the calculated potential rate of debris formation was evaluated by plotting SRC(Success Rate Curve) and calculating AUC(Area Under the Curve). The prediction accuracy of the model was found to be 83.1%. We posit that the model is accurate and reliable enough to contribute to efficient field investigation and debris landform management.

Internet of Things (IoT) Based Modeling for Dynamic Security in Nuclear Systems with Data Mining Strategy (데이터 마이닝 전략을 사용하여 원자력 시스템의 동적 보안을 위한 사물 인터넷 (IoT) 기반 모델링)

  • Jang, Kyung Bae;Baek, Chang Hyun;Kim, Jong Min;Baek, Hyung Ho;Woo, Tae Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • The data mining design incorporated with big data based cloud computing system is investigated for the nuclear terrorism prevention where the conventional physical protection system (PPS) is modified. The networking of terror related bodies is modeled by simulation study for nuclear forensic incidents. It is needed for the government to detect the terrorism and any attempts to attack to innocent people without illegal tapping. Although the mathematical algorithm of the study can't give the exact result of the terror incident, the potential possibility could be obtained by the simulations. The result shows the shape oscillation by time. In addition, the integration of the frequency of each value can show the degree of the transitions of the results. The value increases to -2.61741 in 63.125th hour. So, the terror possibility is highest in later time.

Study of an improved and novel venturi scrubber configuration for removal of radioactive gases from NPP containment air during severe accident

  • Farooq, Mujahid;Ahmed, Ammar;Qureshi, Kamran;Shah, Ajmal;Waheed, Khalid;Siddique, Waseem;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3310-3316
    • /
    • 2022
  • Owing to the rising concerns about the safety of nuclear power plants (NPP), it is essential to study the venturi scrubber in detail, which is a key component of the filtered containment venting system (FCVS). FCVS alleviates the pressurein containment byfiltering and venting out the contaminated air. Themain objective of this research was to perform a CFD investigation of different configurations of a circular, non-submerged, self-priming venturi scrubber to estimate and improve the performance in the removal of elemental iodine from the air. For benchmarking, a mass transfer model which is based on two-film theory was selected and validated by experimental data where an alkaline solution was considered as the scrubbing solution. This mass transfer model was modified and implemented on a unique formation of two self-priming venturi scrubbers in series. Euler-Euler method was used for two-phase modeling and the realizable K-ε model was used for capturing the turbulence. The obtained results showed a remarkable improvement in the removal of radioactive iodine from the air using a series combination of venturi scrubbers. The removal efficiency was improved at every single data point.

Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball

  • Shah, Mati Ullah;Usman, Muhammad;Kim, In-Ho;Dawood, Sania
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.655-669
    • /
    • 2022
  • Passive vibration control devices like tuned liquid column dampers (TLCD) not only significantly reduce buildings' vibrations but also can serve as a water storage facility. The recently introduced modified form of TLCD known as tuned liquid column ball damper (TLCBD) suppressed external vibration efficiently compared to traditional TLCD. For excellent performance, the mass ratio of TLCBD should be in the range of 5% to 7%, which does not include the mass of the ball. This additional mass of the ball increases the overall structure mass. Therefore, in this paper, an effort is made to reduce the mass of TLCBD. For this purpose, a new modified version of TLCBD known as tuned liquid column hollow ball damper (TLCHBD) is proposed. The existing mathematical modeling of TLCBD is used for this new damper by updating the numerical values of the mass and mass moment of the ball. Analytically the optimal design parameters are obtained. Numerically the TLCHBD is investigated with a single degree of freedom structure under harmonic and seismic loadings. It is found that TLCHBD performance is similar to TLCBD in both loadings' cases. To validate the numerical results, an experimental study is conducted. The mass of the ball of TLCHBD is reduced by 50% compared to the ball of TLCBD. Both the arrangements are studied with a multi-degree of freedom structure under harmonic and seismic loadings using a shake table. The results of the experimental study confirm the numerical findings. It is found that the performance behavior of both the dampers is almost similar under harmonic and seismic loadings. In short, the TLCHBD is lighter in weight than TLCBD but has a similar vibration suppression ability.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design

  • Shifa Wu;Zehua Li;Pengfei Wang;G.H. Su;Jiashuang Wan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.460-474
    • /
    • 2023
  • A simple but accurate mathematical model is crucial for dynamic simulations and controller design of helical coil once-through steam generator (OTSG). This paper presents a three-region movable boundary dynamic model of the helical coil OTSG. Based on the secondary side fluid conditions, the OTSG is divided into subcooled region (two control volumes), two-phase region (two control volumes) and superheated region (three control volumes) with movable boiling boundaries between each region. The nonlinear dynamic model is derived based on mass, energy and momentum conservation equations. And the linear model is obtained by using the transfer function and state space transformation, which is a 37-order model of five input and three output. Validations are made under full-power steady-state condition and four transient conditions. Results show good agreements among the nonlinear model, linear model and the RELAP5 model, with acceptable errors. This model can be applied to dynamic simulations and controller design of helical coil OTSG with constant primary-side flow rate.

An Optimal Multi-hop Transmission Scheme for Wireless Powered Communication Networks (무선전력 통신 네트워크에서 최적의 멀티홉 전송 방식)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1679-1685
    • /
    • 2022
  • In this paper, we propose an optimal multi-hop transmission scheme to maximize the end-to-end data rate from the source to the destination node in a wireless powered communication network. The frame structure for multi-hop transmission is presented to transmit multi-hop data while harvesting energy. Then, the transmission time of each node that maximizes the end-to-end transmission rate is determined through mathematical analysis in consideration of different harvested energy and link quality among nodes. We derive an optimization problem through system modeling of the considered wireless powered multi-hop transmission, and prove that there is a global optimal solution by verifying the convexity of this optimization problem. This analysis facilitates to find the optimal solution of the considered optimization problem. The proposed optimal multi-hop transmission scheme maximizes the end-to-end rate by allocating the transmission time for each node that equalizes the transmission rates of all links.

A Case Study on the Aggregate Planning of Multi-product Small-batch Production Facilities: Focusing on System Dynamics Simulation Modeling (다품종 소량생산 설비의 총괄생산계획에 관한 사례 연구: 시스템다이내믹스 시뮬레이션 모델링을 중심으로)

  • Lee, Seungdoe;Kim, Sang Won
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.153-167
    • /
    • 2022
  • Purpose: The purpose of this study is to guide the operation managers who plan daily production of large mass-processing facility that services multi-customers with multi-product, small-batch item characteristics by providing the practical best production quantity and the inventory allowed to build. Methods: Close observation of a subcontract paint-shop operator captured the daily decision process which was reflected in the subcontractor-unique mathematical model and the system dynamics simulation model. Multiple simulations were run to find the practical best production quantity and the maximum allowable stock level of inventory that did not undermine the profit from practical best daily production. Actual data and a few constant values were obtained from the firm under study. Results: While the inventory holding cost for the customer-owned material harms the total profit of the subcontractor, the running cost of the processing facility hinders production in small batches. This balances the maximum possible productions and results in practical best daily production which can be found through simulation runs with actual data. The maximum level of stocked inventory is deduced from the practical best daily production. Conclusion: To build a large volume that enables economy-of-scale production, operators should deal with multi-product small-batch items from multiple customers. When the planned schedule of the time and amount of material in-flow tend not to be reliable, operators can find it practical to execute level production across the planning horizon instead of adjusting to day-to-day in-flow fluctuations.

A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect

  • Jing Bian;Xuhong Zhou;Ke Ke;Michael C.H. Yam;Yuhang Wang;Zi Gu;Miaojun Sun
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.213-227
    • /
    • 2023
  • A passive prismatic-shaped isolation platform (PIP) is proposed to realize enhanced quasi-zero stiffness (QZS) effect. The design concept uses a horizontal spring to produce a tunable negative stiffness and installs oblique springs inside the cells of the prismatic structure to provide a tunable positive stiffness. Therefore, the QZS effect can be achieved by combining the negative stiffness and the positive stiffness. To this aim, firstly, the mathematical modeling and the static analysis are conducted to demonstrate this idea and provide the design basis. Further, with the parametric study and the optimal design of the PIP, the enhanced QZS effect is achieved with widened QZS range and stable property. Moreover, the dynamic analysis is conducted to investigate the vibration isolation performance of the proposed PIP. The analysis results show that the widened QZS property can be achieved with the optimal designed structural parameters, and the proposed PIP has an excellent vibration isolation performance in the ultra-low frequency due to the enlarged QZS range. Compared with the traditional QZS isolator, the PIP shows better performance with a broader isolation frequency range and stable property under the large excitation amplitude.