• Title/Summary/Keyword: Mathematical Feature Extraction

Search Result 21, Processing Time 0.038 seconds

String extraction from text-background mixed documents using mathematical morphology (텍스트-배경무늬 혼합문서로부터 수리형태학을 이용한 문자열 추출)

  • 성연진;어진우
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.104-111
    • /
    • 1997
  • It is known as a difficult problem to recognize text-background mixed documents. In this paper a new string extraction algorithm, using mathematical morphology for the document consisting of text and overlapped periodic background pattern, is proposed. The algorithm consists of pattern periodicity feature extraction and background removal. The extracted pattern periodicity feature is used to determine the shape of structuring elements for morphological pre- and post-processing to remove background. The effectiveness of the proposed algorithm over the existing one is also verified through the experiments with various test documents.

  • PDF

Automatic Grading Algorithm for White Ginseng (백삼 등급 자동판정 알고리즘 개발)

  • 김철수;이종호;박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.607-614
    • /
    • 1998
  • An automatic grading algorithm was developed to replace the manual trading of white ginseng. The algorithm consists of three consecutive stages, (a) image acquisition and preprocessing, (b) mathematical feature extraction, and (c) grade decision using artificial neural network. Mathematical features such as area ratio, mean and standard deviation of graylevel, skewness of graylevel histogram, and the number of run segment are extracted from five equally divided parts of ginseng. An artificial neural network model was used to classify white ginsengs into three categories. The performance of the algorithm was evaluated using 120 ginseng samples and the rate of successful classification was 74%.

  • PDF

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

A Study on Feature Extraction of Morphological Shape Decomposition for Face Verification (얼굴인증을 위한 형태학적 형상분해의 특징추출에 관한 연구)

  • Park, In-Kyu;Ahn, Bo-Hyuk;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The new approach was proposed which uses feature extraction based on fuzzy integral in the process of face verification using morphological shape decomposition. The centre of area was used with image pixels related with structure element and its weight in an attempt to consider neighborhood information. Therefore the morphological operators were defined for feature extraction. And then the number of decomposition images were more about 4 times than the conventional. Finally in the simulations with the extractions for face verification it was proved that the approach in this paper was even more good than the conventional in stability of feature extraction and threshold value.

  • PDF

A Deep Learning Application for Automated Feature Extraction in Transaction-based Machine Learning (트랜잭션 기반 머신러닝에서 특성 추출 자동화를 위한 딥러닝 응용)

  • Woo, Deock-Chae;Moon, Hyun Sil;Kwon, Suhnbeom;Cho, Yoonho
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.143-159
    • /
    • 2019
  • Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.

RESEARCH ON SENTIMENT ANALYSIS METHOD BASED ON WEIBO COMMENTS

  • Li, Zhong-Shi;He, Lin;Guo, Wei-Jie;Jin, Zhe-Zhi
    • East Asian mathematical journal
    • /
    • v.37 no.5
    • /
    • pp.599-612
    • /
    • 2021
  • In China, Weibo is one of the social platforms with more users. It has the characteristics of fast information transmission and wide coverage. People can comment on a certain event on Weibo to express their emotions and attitudes. Judging the emotional tendency of users' comments is not only beneficial to the monitoring of the management department, but also has very high application value for rumor suppression, public opinion guidance, and marketing. This paper proposes a two-input Adaboost model based on TextCNN and BiLSTM. Use the TextCNN model that can perform local feature extraction and the BiLSTM model that can perform global feature extraction to process comment data in parallel. Finally, the classification results of the two models are fused through the improved Adaboost algorithm to improve the accuracy of text classification.

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

Size, Scale and Rotation Invariant Proposed Feature vectors for Trademark Recognition

  • Faisal zafa, Muhammad;Mohamad, Dzulkifli
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1420-1423
    • /
    • 2002
  • The classification and recognition of two-dimensional trademark patterns independently of their position, orientation, size and scale by proposing two feature vectors has been discussed. The paper presents experimentation on two feature vectors showing size- invariance and scale-invariance respectively. Both feature vectors are equally invariant to rotation as well. The feature extraction is based on local as well as global statistics of the image. These feature vectors have appealing mathematical simplicity and are versatile. The results so far have shown the best performance of the developed system based on these unique sets of feature. The goal has been achieved by segmenting the image using connected-component (nearest neighbours) algorithm. Second part of this work considers the possibility of using back propagation neural networks (BPN) for the learning and matching tasks, by simply feeding the feature vectosr. The effectiveness of the proposed feature vectors is tested with various trademarks, not used in learning phase.

  • PDF

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF

ENHANCEMENT AND SMOOTHING OF HYPERSPECTAL REMOTE SENSING DATA BY ADVANCED SCALE-SPACE FILTERING

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.736-739
    • /
    • 2006
  • While hyperspectral data are very rich in information, their processing poses several challenges such as computational requirements, noise removal and relevant information extraction. In this paper, the application of advanced scale-space filtering to selected hyperspectral bands was investigated. In particular, a pre-processing tool, consisting of anisotropic diffusion and morphological leveling filtering, has been developed, aiming to an edge-preserving smoothing and simplification of hyperspectral data, procedures which are of fundamental importance during feature extraction and object detection. Two scale space parameters define the extent of image smoothing (anisotropic diffusion iterations) and image simplification (scale of morphological levelings). Experimental results demonstrated the effectiveness of the developed scale space filtering for the enhancement and smoothing of hyperspectral remote sensing data and their advantage against watershed over-segmentation problems and edge detection.

  • PDF