• Title/Summary/Keyword: Mathematical Analysis

Search Result 4,815, Processing Time 0.029 seconds

Optimizing Ingredients Mixing Ratio of Mungbean Pancake (빈대떡의 재료혼합비율의 최적화)

  • Lee, J.H.;Shin, E.S.;Kweon, B.M.;Ryu, H.S.;Jang, D.H.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1274-1283
    • /
    • 2005
  • The sensory acceptability, texture profile analysis and nutritional evaluation were peformed in Korean traditional mungbean pancake (MPC) and modified MPC containing squid meat and soybean to standardize the recipes for healthy fast food market potentiality. Optimal ingredient formulations were revealed as mung-bean 55$\%$, pork 13$\%$ and vegetables 32$ \%$ for traditional MPC, and pork 3$\%$, squid 42$\%$ and soybean 55$\%$ for modified MPC using response surface methodology. Flavor and hardness correlated highly with overall accept-ability rather than appearance and color of traditional MPC. Higher squid levels raised adhesiveness, springi-ness and resiliences of modified MPC, but soybean decreased these textural attributes. Protein, lipid and total calorie of modified MPC were lower than those of traditional MPC. Computed protein efficiency ratio (C-PER) and degree of gelatinization of modified MPC were superior than traditional MPC.

Comparative Analysis of the New and Old Secondary School Science Textbooks (중학교 과학교과서의 비교분석)

  • Kim, Seong-Jin;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.5 no.1
    • /
    • pp.49-61
    • /
    • 1985
  • In this study, I compared and analyzed the new and old secondary school science textbooks to find the charateristics of them and the differences between them. The results of the study are the following. Major concepts in the new textbook are almost similar to those in the old one. The-new textbook reinforces the functions of the introudction and checking the result of learning, and presents more and diverse learning materials and reduces the degree of learning difficulty by omitting the several abstract knowledges and mathematical formulas which can be understood through formal operational thinking. The results show that the new textbook is more effective in arousing student's interest and curiosity there fore it increases the efficiency of learning. But the new textbook is less suitable for inquiry because it is mainly composed of explanation and fact rather than experiment and observation. I think that this is the result from the actual approach to the real conditions of school when the curriculum was reformed and the new textbook was written.

  • PDF

The Effects of Inductive Activities Using GeoGebra on the Proof Abilities and Attitudes of Mathematically Gifted Elementary Students (GeoGebra를 활용한 귀납활동이 초등수학영재의 증명능력 및 증명학습태도에 미치는 영향)

  • Kwon, Yoon Shin;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.123-145
    • /
    • 2013
  • This study was expected to yield the meaningful conclusions from the experimental group who took lessons based on inductive activities using GeoGebra at the beginning of proof learning and the comparison one who took traditional expository lessons based on deductive activities. The purpose of this study is to give some helpful suggestions for teaching proof to mathematically gifted elementary students. To attain the purpose, two research questions are established as follows. 1. Is there a significant difference in proof abilities between the experimental group who took inductive lessons using GeoGebra and comparison one who took traditional expository lessons? 2. Is there a significant difference in proof attitudes between the experimental group who took inductive lessons using GeoGebra and comparison one who took traditional expository lessons? To solve the above two research questions, they were divided into two groups, an experimental group of 10 students and a comparison group of 10 students, considering the results of gift and aptitude test, and the computer literacy among 20 elementary students that took lessons at some education institute for the gifted students located in K province after being selected in the mathematics. Special lesson based on the researcher's own lesson plan was treated to the experimental group while explanation-centered class based on the usual 8th grader's textbook was put into the comparison one. Four kinds of tests were used such as previous proof ability test, previous proof attitude test, subsequent proof ability test, and subsequent proof attitude test. One questionnaire survey was used only for experimental group. In the case of attitude toward proof test, the score of questions was calculated by 5-point Likert scale, and in the case of proof ability test was calculated by proper rating standard. The analysis of materials were performed with t-test using the SPSS V.18 statistical program. The following results have been drawn. First, experimental group who took proof lessons of inductive activities using GeoGebra as precedent activity before proving had better achievement in proof ability than the comparison group who took traditional proof lessons. Second, experimental group who took proof lessons of inductive activities using GeoGebra as precedent activity before proving had better achievement in the belief and attitude toward proof than the comparison group who took traditional proof lessons. Third, the survey about 'the effect of inductive activities using GeoGebra on the proof' shows that 100% of the students said that the activities were helpful for proof learning and that 60% of the reasons were 'because GeoGebra can help verify processes visually'. That means it gives positive effects on proof learning that students research constant character and make proposition by themselves justifying assumption and conclusion by changing figures through the function of estimation and drag in investigative software GeoGebra. In conclusion, this study may provide helpful suggestions in improving geometry education, through leading students to learn positive and active proof, connecting the learning processes such as induction based on activity using GeoGebra, simple deduction from induction(i.e. creating a proposition to distinguish between assumptions and conclusions), and formal deduction(i.e. proving).

Correlation Between the Parameters of Radiosensitivity in Human Cancer Cell Lines (인체 암세포주에서 방사선감수성의 지표간의 상호관계)

  • Park, Woo-Yoon;Kim, Won-Dong;Min, Kyung-Soo
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.99-106
    • /
    • 1998
  • Purpose : We conducted clonogenic assay using human cancer cell lines (MKN-45, PC-14, Y-79, HeLa) to investigate a correlation between the parameters of radiosensitivity. Materials and Methods : Human cancer cell lines were irradiated with single doses of 1, 2, 3, 5, 7 and 10Gy for the study of radiosensitivity and subrethal damage repair capacity was assessed with two fractions of 5Gy separated with a time interval of 0, 1, 2, 3, 4, 6 and 24 hours. Surviving fraction was assessed with clonogenic assay using $Sperman-H\"{a}rbor$ method and mathematical analysis of survival curves was done with linear-quadratic (LQ) , multitarget-single hit(MS) model and mean inactivation dose$(\v{D})$. Results : Surviving fractions at 2Gy(SF2) were variable among the cell lines, ranged from 0.174 to 0.85 The SF2 of Y-79 was lowest and that of PC-14 was highest(p<0.05, t-test). LQ model analysis showed that the values of $\alpha$ for Y-79, MKN-45, HeLa and PC-14 were 0.603, 0.356, 0.275 and 0.102 respectively, and those of $\beta$ were 0.005, 0.016, 0.025 and 0.027 respectively. Fitting to MS model showed that the values of Do for Y-79. MKN-45, HeLa and PC-14 were 1.59. 1.84. 1.88 and 2.52 respectively, and those of n were 0.97, 1.46, 1.52 and 1 69 respectively. The $\v{D}s$ calculated by Gauss-Laguerre method were 1.62, 2.37, 2,01 and 3.95 respectively So the SF2 was significantly correlated with $\alpha$, Do and $\v{D}$. Their Pearson correlation coefficiencics were -0.953 and 0,993. 0.999 respectively(p<0.05). Sublethal damage repair was saturated around 4 hours and recovery ratios (RR) at plateau phase ranged from 2 to 3.79. But RR was not correlated with SF2, ${\alpha}$, ${\beta}$, Do, $\v{D}$. Conclusion : The intrinsic radiosensitivity was very different among the tested human cell lines. Y-79 was the most sensitive and PC-l4 was the least sensitive. SF2 was well correlated with ${\alpha}$, Do, and $\v{D}$. RR was high for MKN-45 and HeLa but had nothing to do with radiosensitivity parameters. These basic parameters can be used as baseline data for various in vitro radiobiological experiments.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF