• Title/Summary/Keyword: Maternal and Offspring

Search Result 76, Processing Time 0.032 seconds

Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway

  • Xu, Xiang;Lu, Yu-Nan;Cheng, Jia-Hui;Lan, Hui-Wen;Lu, Jing-Mei;Jin, Guang-Nan;Xu, Guang-Hua;Jin, Cheng-Hua;Ma, Juan;Piao, Hu-Nan;Jin, Xuejun;Piao, Lian-Xun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.62-70
    • /
    • 2022
  • Background: Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. Methods: We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. Results: We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). Conclusion: This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.

Ovariectomy, but not orchiectomy, exacerbates metabolic syndrome after maternal high-fructose intake in adult offspring

  • Kim, Mina;Kim, Inkyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.39-49
    • /
    • 2021
  • High fructose diet is associated with the global metabolic syndrome (MtS) pandemic. MtS develops in early life, depending on prenatal and postnatal nutritional status. We hypothesized that ovariectomy increases the chances of developing MtS in adult offspring following high fructose intake by the mother. Pregnant C57BL/6J mouse dams drank water with or without 20% fructose during pregnancy and lactation. After weaning, the pups were fed regular chow. The offspring were evaluated until they were 7 months of age after the mice in each group, both sexes, were gonadectomized at 4 weeks of age. The offspring (both sexes) of the dams who had high fructose intake developed MtS. In the offspring of dams who drank tap water, orchiectomy increased the body weight gain and body fat accumulation, while ovariectomy increased the body fat accumulation as compared to the sham controls. In the offspring of dams with high fructose intake, orchiectomy decreased the body weight gain, body fat accumulation, visceral adiposity, and glucose intolerance, while ovariectomy exacerbated all of them as compared to the sham operations. These data indicate that ovariectomy encourages the development of MtS in adult offspring after maternal high fructose intake, while orchiectomy prevents the development of MtS. The sex difference indicates that male and female sex hormones play contradictory roles in the development of MtS.

Effects of Maternal Nutrition during Pregnancy on the Body Weight, Muscle Fiber Number, Carcass Traits, and Pork Quality Traits of Offspring

  • Choe, J.H.;Choi, Y.M.;Ryu, Y.C.;Lee, S.H.;Kim, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.965-971
    • /
    • 2010
  • The purpose of the current study was to examine the influence of different maternal nutrition treatments during pregnancy on body weight, muscle fiber number, carcass traits, and pork quality traits of offspring. A total of 18 crossbred sows (Landrace${\times}$Yorkshire${\times}$Duroc) were randomly assigned to one of three nutritional treatment groups; control, high energy, and high protein. The control group was fed a standard diet, the high energy group was fed a diet that contained 30% increased metabolizable energy, and the high protein group was fed a diet that contained 30% increased limiting amino acids compared to the control. The sows in each group were fed equal quantities of each diet (1.9 kg/d) for the entire gestational period. A total of 36 piglets from each sow were used to evaluate changes in body weight, muscle fiber number in the longissimus dorsi muscle at birth, carcass traits, and pork quality traits. Birth weight of offspring born to sows in the high energy diet group was significantly higher compared to the high protein diet group (p<0.05). However, body weight of offspring after birth was not significantly different between the groups. Muscle fiber number for the longissimus dorsi muscle at birth was not significantly different between the groups. In addition, there were no significant differences in carcass traits or pork quality traits between offspring born to sows in the control group and those born to sows that received high energy or high protein diets during pregnancy. Based on these results, it appears that maternal nutrition treatment during pregnancy, regardless of whether it is with high energy or high protein diets, does not have a significant effect on body weight, muscle fiber number at birth, carcass traits, or pork quality traits.

EVALUATION OF TECHNIQUES FOR ESTIMATING MILK PRODUCTION BY SOWS 4. A COMPARISON OF TWO WEIGH-SUCKLE-WEIGH TECHNIQUES (OFFSPRING AND MATERNAL) FOR ESTIMATING MILK PRODUCTION

  • Prawirodigdo, S.;King, R.H.;Hughes, P.E.;Dunkin, A.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.165-168
    • /
    • 1991
  • The maternal weigh-suckle-weigh (WSW) method for estimating milk production of sows was further evaluated by comparing this to the traditional WSW method. Twenty one estimates of hourly milk production were obtained by both methods. Total hourly milk production between the two methods was not significantly different (292.4 vs 303.3 g/h, p > 0.05). Hourly milk production determined by the maternal WSW method was highly correlated with hourly milk production estimates using the traditional WSW method ($R_2$ = 0.94, p < 0.001). When corrections for metabolic and salivary losses were made, the milk production figures for the maternal WSW method were approximately 27% less than those estimated by the traditional WSW method.

Effects of maternal dietary energy restriction on breast muscle fibre development in the offspring of broiler breeders

  • Wu, Hongzhi;Sun, Hao;Ma, Chengzhan;Lian, Lina;Lu, Lei;Xu, Liangmei;Xu, Li
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1829-1838
    • /
    • 2021
  • Objective: The effects of maternal dietary energy levels on breast muscle fibre development in offspring of broiler breeders were investigated. Methods: A total of 480 20-week-old Arbor Acres (AA) healthy female broiler breeders, with an average body weight of 2.33±0.01 kg, were randomly divided into 4 treatment groups with 6 replicates and 20 broiler breeders for each replicate and fed a corn and soybean meal diet with 100%, 80%, 70%, and 50% energy levels, respectively. Approximately 300 eggs per treatment were collected for incubation for 6 days. Then, 120 0-day-old female broilers at each energy level were randomly selected and divided into 6 replicates with 20 broilers for each replicate, with this experimental phase with the offspring lasting for 49 days. Results: Compared with the 100% energy group, the breast muscle fibre diameter at embryonic day 21 in the 80% energy group was significantly reduced (p<0.05). In the 80% energy group, the muscle fibre density of the breast increased significantly (p<0.05) at embryonic days 15 and 21. The breast muscle fibre diameter of the offspring in each group was significantly decreased (p<0.05) on the 1st day. The breast muscle sarcomere length of the embryos in the 80% energy group was significantly higher (p<0.05) than those in the 70% and 50% energy groups. Compared with the 100% energy group, the expression of the myostatin gene in the offspring was significantly decreased (p<0.05). Conclusion: In conclusion, the effects of a maternal dietary energy level of 80% in this study were found to be optimal for breast muscle fibre development in offspring, which indicated that the metabolic energy level of AA broilers of 9.36 MJ/kg for the mid-term diet for laying eggs has a more practical significance.

Intrauterine diabetic milieu instigates dysregulated adipocytokines production in F1 offspring

  • Tawfik, Shady H.;Haiba, Maha M.;Saad, Mohamed I.;Abdelkhalek, Taha M.;Hanafi, Mervat Y.;Kamel, Maher A.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.1
    • /
    • pp.1.1-1.11
    • /
    • 2017
  • Background: Intrauterine environment plays a pivotal role in the origin of fatal diseases such as the metabolic syndrome. Diabetes is associated with low-grade inflammatory state and dysregulated adipokines production. The aim of this study is to investigate the effect of maternal diabetes on adipocytokines (adiponectin, leptin and TNF-${\alpha}$) production in F1 offspring in rats. Methods: The offspring groups were as follows: F1 offspring of control mothers under control diet (CD) (CF1-CD), F1 offspring of control mothers under high caloric diet (HCD) (CF1-HCD), F1 offspring of diabetic mothers under CD (DF1-CD), and F1 offspring of diabetic mothers under HCD (DF1-HCD). Every 5 weeks post-natal, 10 pups of each subgroup were culled to obtain blood samples for biochemical analysis. Results: The results indicate that DF1-CD and DF1-HCD groups exhibited hyperinsulinemia, dyslipidemia, insulin resistance and impaired glucose homeostasis compared to CF1-CD (p > 0.05). DF1-CD and DF1-HCD groups had high hepatic and muscular depositions of TGs. The significant elevated NEFA level only appeared in offspring of diabetic mothers that was fed HCD. DF1-CD and DF1-HCD groups demonstrated low serum levels of adiponectin, high levels of leptin, and elevated levels of TNF-${\alpha}$ compared to CF1-CD (p > 0.05). These results reveal the disturbed metabolic lipid profile of offspring of diabetic mothers and could guide further characterization of the mechanisms involved. Conclusion: Dysregulated adipocytokines production could be a possible mechanism for the transgenerational transmittance of diabetes, especially following a postnatal diabetogenic environment. Moreover, the exacerbating effects of postnatal HCD on NEFA in rats might be prone to adipcytokine dysregulation. Furthermore, dysregulation of serum adipokines is a prevalent consequence of maternal diabetes and could guide further investigations to predict the development of metabolic disturbances.

Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring

  • Zhou, Xiaoling;Yan, Qiongxian;Liu, Liling;Chen, Genyuan;Tang, Shaoxun;He, Zhixiong;Tan, Zhiliang
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.847-857
    • /
    • 2022
  • Objective: The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. Methods: Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. Results: Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were down-regulated (p<0.05) in the restricted offspring. Conclusion: Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.

Association between maternal smoking during pregnancy and risk of bone fractures in offspring: a systematic review and meta-analysis

  • Ayubi, Erfan;Safiri, Saeid;Mansori, Kamyar
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.3
    • /
    • pp.96-102
    • /
    • 2021
  • This study aimed to investigate the effect of maternal smoking during pregnancy (MSDP) on the risk of bone fractures in the offspring through a systematic review and meta-analysis. The PubMed, Web of Science, and Scopus databases were systematically searched for relevant articles published through July 2019. According to heterogeneity, the pooled risk ratio (RR) and odds ratio (OR) and their corresponding 95% confidence interval (CI) were obtained using fixed or random effects models. The heterogeneity and quality of the included studies were assessed by the I-squared (I2) statistic and the Newcastle-Ottawa scale, respectively. Sensitivity analyses were performed to test the effect of MSDP misclassification on the results. The review of 842 search records yielded 5 studies including 8,746 mother-child pairs that were included in the meta-analysis. Pooling adjusted effect measures showed that MSDP was not associated with a later risk of bone fractures in the offspring (pooled RR, 1.15; 95% CI, 0.84-1.58; I2=66.8%; P=0.049). After the adjustment for misclassification, MSDP may be associated with a 27% increased risk of bone fracture (pooled OR, 1.27; 95% CI, 1.00-1.62; I2=0%; P=0.537). After the adjustment for misclassification, MSDP is associated with an increased risk of bone fractures among children whose mothers smoked during pregnancy.

Investigating the Role of Microglia in Maternal Immune Activation in Rodent Models (모체 면역 활성화 유도 설치류 모델에서 미세아교세포의 역할 조사)

  • Hyunju Kim
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.429-435
    • /
    • 2023
  • Epidemiological studies suggest that maternal infection, maternal stress, and environmental risk factors during pregnancy increase the risk of brain development abnormalities associated with cognitive impairment in the offspring and increase susceptibility to schizophrenia and autism spectrum disorder. Several animal models have demonstrated that maternal immune activation (MIA) is sufficient to induce abnormal brain development and behavioral defects in the fetus. When polyinosine:polycytodylic acid (poly I:C) or lipopolysaccharide (LPS), which is commonly used in maternal immune activation animal models, was introduced into a pregnant dam, an increase in pro-inflammatory cytokines and microglial activity was observed in the offspring's brain. Microglia are brain-resident immune cells that play a mediating role in the central nervous system, and they are responsible for various functions, such as phagocytosis, synapse formation and branching, and angiogenesis. Several studies have reported that microglia are activated in MIA offspring and influence offspring behavior through interactions with various cytokines. In addition, it has been reported that they play an important role in brain circuits through interactions with neurons and astrocytes. However, there is controversy concerning whether microglia are essential to brain development or lead to behavioral defects, and the exact mechanism remains unknown. Therefore, for the potential diagnosis and treatment of brain developmental disorders, a functional study of microglia should be conducted using MIA animal models.

Effects of Maternal Hypothyroidism on the Pubertal Development in Female Rat Offspring

  • Park, Jin-Soo;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.25 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • The present study was performed to investigate the effect of maternal hypothyroidism and puberty onset in female rat pups. To do this, we employed propylthiouracil (PTU) to prepare a hypothyroid rat model. Pregnant rats were treated with PTU (0.025%) in drinking water from gestational day 14 to postnatal day 21 of offspring. Comparison of general indices such as body and tissue weights and puberty indices such as vaginal opening (VO) and tissue histology between control and PTU-treated rats were conducted. There was no significant difference in the date of VO between control and PTU group. The body weights of the PTU group were significantly lower, only 36.8% of the control group (p<0.001). Although the absolute thyroid weight was not changed by PTU treatment, the relative weight increased significantly about 2.8 times (p<0.001), indicating that hypothyroidism was successfully induced. On the other hand, the absolute weights of the ovary and uterus were markedly decreased by PTU administration (p<0.001), and the relative weight was not significantly changed. The ovarian histology of PTU group revealed the advanced state of differentiation (i.e., presence of corpora lutea). Inversely, the uterine histology of PTU group showed underdeveloped structures compared those in control group. Taken together, the present study demonstrates that our maternal hypothyroidism model resulted in minimal effect on pubertal development symbolized by VO despite of huge retardation in somatic growth. More sophisticatedly designed hypothyroidism model will be helpful to achieve a better understanding of pubertal development and related disorders.