• Title/Summary/Keyword: Materials property

Search Result 4,182, Processing Time 0.03 seconds

New Functional Properties of Passion Fruit Extract on Skin (패션 프룻 추출물이 피부에 미치는 새로운 기능적 효과)

  • Jeong, Mi Suk;Kim, Soon-Rae;Han, Chang Woo;Kim, Hyeon Jin;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • In this research, the anti-inflammatory, antioxidant, antiaging, and skin whitening properties of pulp and seed extracts of passion fruit were studied. The result of the primary skin irritation test using a skin-attached patch determined the skin irritation index to be 0.00 for the passion fruit extract. In addition, RAW 264.7 macrophages produce NO by stimulation of lipopolysaccharides, and the application of extracts to this resulted in significantly lower NOs, confirming the excellent anti-inflammatory properties of passion fruit extracts. The 2,2-diphenyl-1-picrylhydrazyl test further confirmed that the passion fruit extract exhibits a good 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate radical scavenging ability of 5.11% and strong antioxidant properties. The presence of collagen type I in the skin is a measure of aging and various skin diseases. The results obtained from the analysis of the activity of human procollagen I alpha 1 confirmed that the passion fruit extract reduces the synthesis of procollagen. In addition, the skin whitening property of the passion fruit extract was confirmed by the melanin inhibition test, and a sample was obtained that contained more than 2% of arbutin, a whitening agent approved by the Ministry of Food and Drug Safety, which is generally present in the form of a white powder and is used as a functional ingredient. This confirms that the whitening efficacy of the passion fruit extract obtained from nature contributes to the development of functional raw materials for cosmetics and food.

Quantification of the Elastic Property of Normal Thigh Muscles Using MR Elastography: Our Initial Experience (자기 공명 탄성 검사를 이용한 대퇴 근육의 탄성도의 정량화: 초기 경험)

  • Junghoon Kim;Jeong Ah Ryu;Juhan Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1556-1564
    • /
    • 2021
  • Purpose This study aimed to apply MR elastography (MRE) to achieve in vivo evaluation of the elastic properties of thigh muscles and validate the feasibility of quantifying the elasticity of normal thigh muscles using MRE. Materials and Methods This prospective study included 10 volunteer subjects [mean age, 32.5 years, (range, 23-45 years)] who reported normal activities of daily living and underwent both T2-weighted axial images and MRE of thigh muscles on the same day. A sequence with a motion-encoding gradient was used in the MRE to map the propagating shear waves in the muscle. Elastic properties were quantified as the shear modulus of the following four thigh muscles at rest; the vastus medialis, vastus lateralis, adductor magnus, and biceps femoris. Results The mean shear modulus was 0.98 ± 0.32 kPa and 1.00 ± 0.33 kPa for the vastus medialis, 1.10 ± 0.46 kPa and 1.07 ± 0.43 kPa for the vastus lateralis, 0.91 ± 0.41 kPa and 0.93 ± 0.47 kPa for the adductor magnus, and 0.99 ± 0.37 kPa and 0.94 ± 0.32 kPa for the biceps femoris, with reader 1 and 2, respectively. No significant difference was observed in the shear modulus based on sex (p < 0.05). Aging consistently showed a statistically significant negative correlation (p < 0.05) with the shear modulus of the thigh muscles, except for the vastus medialis (p = 0.194 for reader 1 and p = 0.355 for reader 2). Conclusion MRE is a quantitative technique used to measure the elastic properties of individual muscles with excellent inter-observer agreement. Age was consistently significantly negatively correlated with the shear stiffness of muscles, except for the vastus medialis.