• Title/Summary/Keyword: Material take-off

Search Result 32, Processing Time 0.026 seconds

The Development of BIM Library for Building Life Cycle CO2 Assessment (건축물 전과정 $CO_2$ 평가를 위한 BIM 라이브러리 개발)

  • Lee, Byeong-Ho;Hong, Soung-Wook;Shin, Sung-Woo
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.2
    • /
    • pp.67-76
    • /
    • 2012
  • BIM and its quantity take-off widely apply to the construction projects and LCCO2 Assessment using the BIM's quantity take-off function can be tried recently. Because BIM modeling programs such as Revit and ArchiCAD do not provide adequate library for LCCO2 Assessment, quantity take-off data should be conversed and applied to Carbon Emission Coefficient using Excel program or manual work. Therefore, the purpose of this research is 1) to propose the Unit Conversion Systems for Carbon Emission Coefficient, 2) to provide basic library sets for BIM based LCCO2 Assessment method, and 3) to apply 11 material library sets on a apartment unit plan modeling to pursue the CO2 emission evaluation of the material production in the process of LCCO2 Assessment. Research results showed CO2 emission amount of 458.64kgCO2/m2 from the apartment unit plan modeling.

A Study on Algorithm for Materials Take-off Using Pothole Detection System (포트홀 감지 시스템을 이용한 보수재료량 산출 알고리즘 개발)

  • Kim, Kyungnam;Kim, Sung-Ho;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.603-610
    • /
    • 2017
  • Various type of pavement deterioration such as crack, bumpy, pothole is rapidly increasing according to the accelerated environmental changes like heavy rainfall, frequent snowing, difference temperature, etc. Accident related to pothole that cause fatal traffic accidents has been increased more than five times over the next five years starting from 2008. As direct or indirect damage by pothole which caused injuries and car damages increases every year, quicker and more efficient management measures are necessary. This study presents the algorithm for materials quantity take-off. The algorithm was suggested by correlation in pothole size and area. Suggested algorithm were confirmed the validity through the 15 field survey in capital area. According to the results of survey, usually the residual materials at which 5~7 kg was generated decreased to 1~2 kg. It showed that automatic pothole detection system is expected not only to reduce materials and resources, but also to contribute to quality improvements of pavement through more accurate material take-off from the situation of constructing rely on their own judgement.

Effect of water cut-off by M.S.G. method for weathered soil and alluvial soil (풍화토 및 충적토 지반에 적용된 M.S.G공법의 차수효과)

  • 지덕진;우상백;강진기;김태한;박종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Generally, ordinary portland cement(OPC) is widely used for grouting to reduce permeability of ground under the foundations of structures. But, it is hard to be injected into the microscopic voids, fissures and crevices in soil or rock formation for the OPC material. Therefore new method what is called MSG(Micro Silica Grouting) has been developed recently to improve the weak point of the OPC material. In this case study, in order to verify performance of the MSG's water cut-off, trial injections were performed in rear of CIP(Cast in Place Pile) on the site A(weathered soil) and B(alluvial soil) that are constructed for the subway No. 9 nowadays. To take the proper grouting method of the MSG in the trial injecting, the injections are carried out for grouting types(constant pressure or fixed Quantity) and grouting methods(1.5shot or 2.0shot) and to confirm the effects of water cut-off and the injection range of the MSG, the tests of permeability and indicator(phenolphthalein) response were performed before and after the injection. Through the tests results, we could affirm the effects of water cut-off of the MSG and the injection range for the weathered and alluvial soil layers near the Han River. Finally we could make sure the application of the MSG method in actual construction under the layers.

  • PDF

3D BIM Modeling of Temporary Structure for Earthwork using Parametric Technique (파라메트릭 기술을 이용한 토공용 임시 구조물의 3D BIM 모델링)

  • Tanoli, Waqas Arshad;Raza, Hassnain;Lee, Seung-Soo;Park, Sang-Il;Seo, Jong-won
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • Nowadays Building Information Modeling (BIM) is a significant source of sharing project information in the construction industry. This method of sharing the information enhances the project understanding among stakeholders. Modeling of information using BIM is becoming an essential part of many construction projects around the globe. Despite rapid adoption of BIM in construction industry still, some sectors of the industry like earthwork have not yet reaped its full benefits. BIM has brought a paradigm shift through identification and integration of the roles and responsibilities of project participants on a single platform. BIM is a 3D model-based process which provides the insight into the efficient project planning and design. The 3D modeling can also be used significantly for the design of temporary structures in an earthwork project. This paper presents the quantity take-off methodology and parametric modeling technique for creating the temporary structures using 3D BIM process. A case study is conducted to implement the proposed temporary structure family design on a real site project. The study presented is beneficial for the earthwork project stakeholders to extract the relevant information using 3D BIM models in a project. It provides an opportunity to calculate the quantity of material required for a project accurately.

FPD Industry, Challenge for Value Creation

  • Chang, Won-Kie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1-1
    • /
    • 2009
  • Recently, the FPD industry has faced the limit in market growth due to lack of new growth engine as a replacement of television. With sluggish market demand deepened by global economic crisis and persistent concern over panel oversupply, growth of the panel market has sharply slowed down, and profitability has been eroded. This also has tremendous effect on related industries including component, material and machine industries, spreading a sense of crisis across the whole FPD industry. Under this circumstance, for the FPD industry to take off once again, all involved in the FPD industry must cooperate and come up with innovative ideas, and identify the driving force to realize turbo-charged growth.

  • PDF

BIM-BASED TIME SERIES COST MODEL FOR BUILDING PROJECTS: FOCUSING ON MATERIAL PRICES

  • Sungjoo Hwang;Moonseo Park;Hyun-Soo Lee;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.1-6
    • /
    • 2011
  • As large-scale building projects have recently increased for the residential, commercial and office facilities, construction costs for these projects have become a matter of great concern, due to their significant construction cost implications, as well as unpredictable market conditions and fluctuations in the rate of inflation during the projects' long-term construction periods. In particular, recent volatile fluctuations of construction material prices fueled such problems as cost forecasting. This research develops a time series model using the Box-Jenkins approach and material price time series data in Korea in order to forecast trends in the unit prices of required materials. Building information modeling (BIM) approaches are also used to analyze injection times of construction resources and to conduct quantity take-off so that total material prices can be forecast. To determine an optimal time series model for forecasting price trends, comparative analysis of predictability of tentative autoregressive integrated moving average (ARIMA) models is conducted. The proposed BIM-based time series forecasting model can help to deal with sudden changes in economic conditions by estimating material prices that correspond to resource injection times.

  • PDF

Determination of Thin Film Thickness by EDS Analysis and its Modeling (EDS 분석과 모델링에 의한 박막두께 측정 방법에 관한 연구)

  • Yun, Jae-Jin;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.647-653
    • /
    • 2011
  • In this study, a method to measure the thickness of thin film by EDS (energy dispersive spectroscopy) is suggested. We have developed a model which calculates the thickness of thin film from the characteristic x-ray intensity ratio of the elements in thin film and substrate by considering incident electron beam energy, x-ray generation curve, backscattering and absorption of x-ray, take-off angle of x-ray and tilt angle of the sample. We obtained the relation curve between the film thickness measured experimentally and the x-ray intensity ratio of elements. The film thicknesses calculated from the model agrees quite well with those measured experimentally. Therefore, the thin film thickness can be measured rapidly and accurately by using the model developed in this study and the x-ray intensity ratio obtained in EDS analysis.

Economic Analysis of a 5-Story RC OMRF Retrofitted with Modified Epoxy Mortar for Improving Seismic Performance (변성에폭시 모르터로 내진보강한 5층 철근콘크리트 보통모멘트골조의 경제성 분석)

  • Kang, Suk-Bong;Kwak, Jongman;Shin, Dongwoo;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.207-215
    • /
    • 2014
  • As a reinforcement material for RC members, the modified epoxy mortar has been reported one of the superior materials since the material can improve the load capacity and the seismic performance of the RC members. However, there were few experimental studies and analytical research for improving seismic performance with the material. This study is to propose an effective reinforcement plan for RC Ordinary Moment Resisting Frame (OMRF) with the evaluation of seismic performance and economic analysis. For the objective, first, the load-deflection curve of a simple beam specimen was compared with the analytical results. Second, a 5-story RC OMRF structure was designed only for gravity load and the alternatives for seismic reinforcement were suggested. Third, pushover analysis was executed for evaluation of design coefficients and seismic performance of the structures. Finally, an effective reinforcement plan was suggested based on the results of quantity take-off and economic analysis. The findings of this study can be utilized as the basic data when the modified epoxy mortar is applied to practice for improving the seismic performance of RC members.

Quantity Estimation Method for High-Performance Insulated Wall Panels with Complex Details Using BIM Family Libraries (BIM의 패밀리 라이브러리를 이용한 복잡한 상세를 갖는 고단열 벽체 판넬의 물량 산출 방법)

  • Mun, Ju-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigates the effectiveness of Building Information Modeling(BIM) software, specifically SketchUp and Revit, in reducing errors during quantity take-off(QTO) for complex building elements. While 3D modeling offers advantages, existing software may not fully account for manufacturing discrepancies, such as variations in concrete cover thickness and reinforcing bar radius. To address this limitation, this research proposes a BIM-based QTO method for high-insulation wall panels with intricate details. The method utilizes a BIM family library, focusing on key parameters like concrete cover thickness and inner radius of shear reinforcement. A case study compared the cross-sectional details of a wall panel modeled in Revit with the actual manufactured specimen. The analysis revealed a 12% reduction in modeled concrete cover thickness and a 1.27 times larger modeled inner radius of the shear bar compared to the real-world values. The proposed method incorporates these manufacturing variations into the Revit model of the high-insulation wall panel. Software like Navisworks facilitates the identification and correction of any material interferences arising from these adjustments. Furthermore, the method employs a unit wall concept(1m2) to account for the volume of various materials, including insulation and splice sleeves at joints. This allows for the identification of a similar existing family within the BIM library(e.g., "Double RC wall with embedded insulation") that reflects the actual material quantities used in the wall panel. By incorporating these manufacturing-induced variations, the proposed method offers a more accurate QTO process for complex high-insulation wall panels. The "Double RC wall with embedded insulation" family within the Revit program serves as a valuable tool for material quantity estimation in such scenarios.

High Efficiency Drive of SRM using GA-Neural Network

  • Ahn, Jin-Woo;Lee, Dong-Hee;Seok-Gyu oh;Park, Sung-jun
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • The torque of SRM depends on a phase current and the inductance of the motor. But the inductance is saturated nonlinearly according to the position and current. To drive the motor effectively, the control scheme should take into account the nonlinear characteristics of the magnetic material. This paper proposes an optimal control scheme for high efficiency drive of SRM by adjusting both the turn-on and turn-off angle. The high efficiency drive points are simulated and searched by using GA-Neural Network The switching angles are nonlinearly varied with rotor speed and load.