• Title/Summary/Keyword: Material specific

Search Result 2,649, Processing Time 0.038 seconds

A Study on Thermo-Physical Properties of Microencapsulated Phase Change Material Slurry (마이크로캡슐 잠열 축열재 혼합수의 열물성에 관한 연구)

  • 임재근;최순열;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.962-971
    • /
    • 2004
  • This paper has dealt with thermo-physical properties of microencapsulated phase change material slurry as a latent heat storage material having a low melting point. The measured results of the thermo-physical properties of the test microencapsulated phase change material slurry, those are, density, specific heat, thermal conductivity and viscosity, were discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). The measurements of these properties of microencapsulated phase change material slurry have been carried out by using a specific-gravity meter, a water calorimeter, a differential scanning calorimeter(DSC), a transient hot wire method and rotating type viscometer, respectively. It was clarified that the additional properties law could be applied to the estimation of the density and specific heat of microencapsulated phase change material slurry and also the Euckens equation could be applied to the estimation of the thermal conductivity of this slurry.

Evaluation of Humidity Control Ceramic Board Using Gypsum Binder (석고계 바인더를 활용한 습도도절 세라믹 보드의 특성 평가)

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than bentonite and zeolite. The flexible strength of the gypsum board decreased with an increasing amount of porous material, and the flexible strength was lowest when active clay with a higher specific surface area than others porous materials was added. The specific surface area and total pore volume of ceramic boards containing porous material were highest at $102.25m^2/g$, $0.142cm^3/g$, respectively, when the active clay was added. In addition, as the amount of added porous materials increased, the specific surface area and total pore volume of the ceramic board increased, but the average pore diameter decreased. The addition of s porous materials with a high specific area and a large pore volume improved the moisture absorptive and desorptive performance of the ceramic board. Therefore, in this experiment, the moisture absorptive and desorptive properties were the best when active clay was added. Furthermore, as the amount of added porous materials increased, the moisture absorptive and desorptive properties improved. When 70 mass% of active clay was added to ${\alpha}$-type gypsum, the hygroscopicity was the highest, about $300g/m^2$, in this experiment.

Precise Drilling characteristics of glass fiber epoxy composite material (유리섬유 에폭시 복합재료의 정밀드릴가공 특성)

  • 김홍배
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.117-122
    • /
    • 1998
  • Glass fiber epoxy composite material is widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in the aircraft structures or machine elements, accurate surfaces for bearing mounting or joint must be provided, which require precise machining. In this paper, the machinability of the glass fiber epoxy composite material was experimentally investigated. The results can be summarized as follows : 1. The entrance of hole is very good manufacturing existing, but exit come to occur sever surface exfoliation. 2. The cutting force in drilling of the glass fiber epoxy composite material is decreased as the drilling speed increased. 3. If the glass fiber epoxy composite material is drilling by the standard twist drill, then the hole recommand cutting condition is spindle speed 400∼600rpm, feed 40∼50mm/min.

  • PDF

Estimation of Specific Gravity of Soil Mixture (배합비에 따른 혼합토의 비중 산정)

  • Shin, Hyun-Young;Kim, Kyoung-O;Kim, You-Seok;Park, Jin-Yoo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.951-954
    • /
    • 2010
  • There are lots of soft ground improvement methods which is consist of different materials. In the analysis and design, composite ground method is usually regarded. Composite ground method considers the area replacement ratio as a key parameter to combine the physical and mechanical characteristics of tow different material. In this study, using composite material consist of three different materials which have different diameters, series of specific gravity test were performed according to KS F 2308, to investigate the applicability of composite ground method. As a result, it is found that composite material which is consist of fine grained soil and granular soil has a high applicability of composite ground method. This result means that, in estimating of ground properties of composite material which is consist of similar fine grained material such as cement mixing etc., composite ground method has a less applicability.

  • PDF

Development of Silicone coated by Carbon driven PVDF and its anode characteristics for Lithium Battery (전구체로서 PVDF를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.350-351
    • /
    • 2005
  • The electrochemical behavior of Si-C material synthesized by heating the mixture of silicon and polyvinylidene fluoride (PVDF). Coin cells of the type 2025 were made using the synthesized material and the electrochemical studies were performed. Si-C/Li cells were made by using the developed Si-C material. Charge/discharge test was performed at 0.1C hour rate. Initial charge and discharge capacities at Si-C material derived from 20 wt.% of PVDF was found to be 1,830 and 526 mAh/g respectively. Initial charge/discharge characteristics of the electrode were analyzed. The level of reversible specific capacity was about 216 mAh/g at Si-C material derived from 20 wt.% of PVDF, IIE, intercalation efficiency at initial charge/discharge, was 68 %. Surface irreversible specific capacity was 31 mAh/g, and average specific resistance was 2.6 ohm*g.

  • PDF

A Study on the Electrochemical Properties of the Cathode upon Different Kinds of Activated carbon in Zinc/Air Battery (활성탄 종류에 따른 아연공기전지용 Cathode의 전기화학적 특성 연구)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.415-421
    • /
    • 2004
  • The voltage profile of Zinc/Air battery during discharge has very flat pattern in a given voltage range, But, if not enough the porosity in cathode, as a result of that capacity, energy and discharge voltage of batteries become low. Therefore, we focused the pore effects in activated carbon for cathode. We examined discharge voltage, specific capacity, specific energy, resistance and characteristics during the GSM pulse discharge upon different kinds of activated carbon in Zinc/Air battery, Also we measured porosity of the air cathode according to the ASTM. So we achieved improvement of specific capacity, specific energy and discharge voltage according to increase meso pores of activated carbon. We found the optimized activated carbon material for Zinc/Air battery.

The electrochemical properties of hybrid carbon as a negative active material for lithium ion batteries (리튬이온전지용 음극 활물질 하이브리드형 탄소의 전기화학적 특성)

  • Yang, Dong-Bok;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.27-30
    • /
    • 2004
  • Different types of hybrid negative materials on pitch based carbon and natural graphite for lithium ion batteries were studied. Two types of active materials were prepared, that is, pitch based graphite carbon, and pitch based carbon impregnating natural graphite. The specific capacity, capacity recovery in high temperature condition, and other electrochemical properties were achieved for these materials. We found that addition of natural graphite type to the pitch based carbon can significant1y improve the specific capacity and interfacial resistance. However, use of natural graphite will cause a serious capacity loss in the high temperature condition owing to its increasing interface resistance. The specific capacity ranged from 321 to 348 mAh/g and the maximum specific capacity was obtained in the case of pitch based carbon impregnating natural graphite.

  • PDF

A study on the forming analysis of double-dome model considering CFRP prepreg laminate condition and coefficient of friction (CFRP Prepreg 적층조건과 금형 마찰계수를 고려한 Double-dome 형상 성형해석 연구)

  • Kim, Young-Ju;Lee, San-Ho;Kim, Heung-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.12-17
    • /
    • 2016
  • Recently, lightweight material is attracting attention as a solution to the problem of fuel efficiency and increasing the need for development. CFRP has been attracting attention as lightweight materials for automobile because it has a high specific stiffness and specific strength compared to steel material. CFRP have a wide range of mechanical properties depending on the laminate condition. In this paper, study on the forming analysis of double-dome model was performed considering CFRP prepreg laminate condition and coefficient of friction. After forming analysis, the result has compared with wrinkling area and vertical strain of fiber to the laminated condition. And then compared with inflow of blank to the laminate condition. Through this paper, we propose the forming analysis methods of CFRP material.

Electrochemical Properties of EDLC Electrodes with Diverse Graphene Flake Sizes (그래핀 플레이크 크기에 따른 전기 이중층 커패시터용 전극의 전기화학적 특성)

  • Yu, Hye-Ryeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.112-116
    • /
    • 2018
  • Electric double layer capacitors (EDLCs) are promising candidates for energy storage devices in electronic applications. An EDLC yields high power density but has low specific capacitance. Carbon material is used in EDLCs owing to its large specific surface area, large pore volume, and good mechanical stability. Consequently, the use of carbon materials for EDLC electrodes has attracted considerable research interest. In this paper, in order to evaluate the electrochemical performance, graphene is used as an EDLC electrode with flake sizes of 3, 12, and 60 nm. The surface characteristic and electrochemical properties of graphene were investigated using SEM, BET, and cyclic voltammetry. The specific capacitance of the graphene based EDLC was measured in a 1 M $TEABF_4/ACN$ electrolyte at the scan rates of 2, 10, and 50 mV/s. The 3 nm graphene electrode had the highest specific capacitance (68.9 F/g) compared to other samples. This result was attributed to graphene's large surface area and meso-pore volume. Therefore, large surface area and meso-pore volume effectively enhances the specific capacitance of EDLCs.