• Title/Summary/Keyword: Material property variation

Search Result 222, Processing Time 0.031 seconds

The Electrical Characterization of Magnetic Tunneling Junction Cells Using Conductive Atomic Force Microscopy with an External Magnetic Field Generator

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.271-274
    • /
    • 2010
  • We examined the tunneling current behaviors of magnetic tunneling junction (MTJ) cells utilizing conductive atomic force microscopy (AFM) interfaced with an external magnetic field generator. By introducing current through coils, a magnetic field was generated and then controlled by a current feedback circuit. This enabled the characterization of the tunneling current under various magnetic fields. The current-voltage (I-V) property was measured using a contact mode AFM with a metal coated conducting cantilever at a specific magnetic field intensity. The obtained magnetoresistance (MR) ratios of the MTJ cells were about 21% with no variation seen from the different sized MTJ cells; the value of resistance $\times$ area (RA) were 8.5 K-12.5 K $({\Omega}{\mu}m^2)$. Since scanning probe microscopy (SPM) performs an I-V behavior analysis of ultra small size without an extra electrode, we believe that this novel characterization method utilizing an SPM will give a great benefit in characterizing MTJ cells. This novel method gives us the possibility to measure the electrical properties of ultra small MTJ cells, namely below $0.1\;{\mu}m\;{\times}\;0.1\;{\mu}m$.

Effect of Si Contents on Structure and Mechanical Properties of Al-Si Alloy Metallic Foams (Al-Si 합금 발포금속의 조직 및 기계적 특성에 미치는 Si함량의 영향)

  • Kim, Byeong-Gu;Tak, Byeong-Su;Jeong, Seung-Reung;Jeong, Min-Jae;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Metal foam is a porous or cellular structure material and representative property is a very high porosity. Foamed materials have very special properties such as sound, vibration, energy and impact absorption capacity. Especially this properties are widely used for safety demands of architecture, auto and aircraft industry. But metal foam need to increased its compression strength and hardness. This study were researched about Al-Si alloy foams with variation amount of Si contents for their fabrication and properties such as porosity, cell structure, microstructure and mechanical properties. The result are that the range of pore size is 2~4 $mm{\phi}$, the high porosity are 88%, high yield strength is 1.8MPa, the strain ratio is 60~70% and vickers hardness is 33.1~50.6.

Reliability-Based Topology Optimization for Structures with Stiffness Constraints (강성구속 조건을 갖는 구조물의 신뢰성기반 위상최적설계)

  • Kim, Sang-Rak;Park, Jae-Yong;Lee, Won-Goo;Yu, Jin-Shik;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2008
  • This paper presents a Reliability-Based Topology Optimization(RBTO) using the Evolutionary Structural Optimization(ESO). An actual design involves some uncertain conditions such as material property, operational load and dimensional variation. The Deterministic Topology Optimization(DTO) is obtained without considering the uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraints are satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability index approach(RIA) is adopted to evaluate the probabilistic constraints. In order to apply the ESO method to the RBTO, sensitivity number is defined as the change in the reliability index due to the removal of the ith element. Numerical examples are presented to compare the DTO with the RBTO.

A study on the heat treatment processing of 7050 aluminum alloy (7050Al 합금의 열처리공정 개발에 관한 연구)

  • Lee, H.S.;Nam, T.W.;Lee, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.139-146
    • /
    • 1996
  • The aero-industry is union industry which includes a research development type, a knowledge accumulation type and a developed country type. The aero-industry of Korea is in semi-developed type stage but departed later than that of other country such as Taiwan, Indonesia etc. Therefore, the necessity of domestic airplane material is required. This study on 7050Al extruded alloy aims to suggest an adequate heat treatment conditions of T73, T74 and T76. The results of this study show that; 1. The optimum conditions of T7x heat treatment in extruded 7050Al alloy show this; $$T73:121^{\circ}C{\times}7hr+177^{\circ}C{\times}14hr$$. $$T74:121^{\circ}C{\times}7hr+177^{\circ}C{\times}10hr$$. $$T76:121^{\circ}C{\times}7hr+163^{\circ}C{\times}21hr$$. 2. The 2nd step aging heat treatment such as T73, T74 and T76 etc. is efective in 7050Al alloy but the variation otf microstructure and mechanical property with dispersive inclusions produced for extrusion process causes some troubles. Accordingly, in order to produce a good 7050Al alloy, a careful attention is needed in manufacturing process.

  • PDF

Sensitivity Analysis of a Mandrel Type Fiber Optic Acoustic Sensor Using an Analytical Method (해석적 방법에 의한 맨드릴형 광-음향센서의 감도특성 분석)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.92-99
    • /
    • 2000
  • In this paper, theoretical acoustic sensitivity was derived to describe acousto-optic transduction property of the mandrel type fiber optic acoustic sensor with respect to external acoustic field. The acoustic sensitivity was analyzed in relation to both material properties and geometrical influence factors of the constitutional parts of the sensor, analytically. Validity of the theoretical results were verified through comparison with the finite element analysis results. The variation trends of the sensitivity of the sensor in relation to the studied parameters showed good agreement for the two analysis methods. According to the results, it is considered more economical to design the basic structure of the sensor with the analytic equations developed in this paper, and then to carry out further detailed analysis with the finite element method for specific points of design interest.

  • PDF

Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile (자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구)

  • 허영민;박동환;강성수
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

Additional Axial Stress of CWR Track on the Bridge according to the Variation of Design Vehicle Load (설계차량하중 변화에 따른 교량상 장대레일 궤도의 부가축응력)

  • Yun, Kyung-Min;Jeon, Byeong-Heun;Choi, Shin-Hyung;Lim, Nam-Hyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.807-813
    • /
    • 2015
  • The CWR(Continuous Welded Rail) on a bridge shows complex structural behavior compared to those on the roadbed. The influence factors on the track-bridge interaction are the variation of temperature and vehicle load. The analysis methods for track-bridge interaction, material property, modeling method, loads and combination method are indicated in the domestic railway design principle, KR C-08080. The vehicle load in KR C-08080 was changed in 2014. In this study, to evaluate the effect of the changed vehicle load on the track-bridge interaction, the track-bridge interaction analyses were performed for 22 bridges by using finite element method.

Buckling Analysis of Corrugated Board using Finite Element Method (유한요소법에 의한 Corrugated Board의 휨 발란스 해석)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • The top-to-bottom compression strength of corrugated board box is the most important mode of loading during it's no, and it depends largely on the edgewise compression strength of the corrugated board in the cross-machine direction and to a considerable extent on the flexural stiffness in both principal directions (CD; cross-machine direction, MD; machine direction) of the corrugated board. Corrugated board is a sandwich structure with an orthotropic property. The purpose of this study was to elucidate the principal design parameters for board combination of corrugated board from the viewpoint of bending strength through the finite element analysis [FEA] fur the various corrugated board. In general, the flexural stiffness [FS] in the MD was 2-3 times larger than that in the CD, and the effect of liner for the FS of corrugated board was much bigger than that of corrugating medium. The flexural stiffness index [FSI] was high when the stiffness of liner was in the order of inner, outer, and middle liner in double-wall corrugated board [DW], and the effect of the stiffness arrangement or itself reinforcement of corrugating medium on the FSI was not high. In single-wall corrugated board [SW] with DW. the variation of FSI with itself stiffness reinforcement of liner was much bigger than that with stiffness arrangement of liner. The highest FSI was at the ratio of about 2:1:2 for basis weight distribution of outer, middle, and inner liner if the stiffness of liner and total basis weight of corrugated board were equal in DW Secondarily. basis weight was in the order of inner, outer, and middle liner. However, the variation of FSI with basis weight distribution between liner and corrugating medium was much bigger than that with itself basis weight distribution ratio of liner and corrugating medium respectively in both DW and SW. md the FSI was high as more total basis weight was divided into liner. These phenomena fur board combination of corrugated board based on the FEA were well verified by experimental investigation.

Deflection Prediction of Piezo-composite Unimorph Actuator Considering Material Property Change of Piezoelectric Single Crystal for Compression Stress Variation (압축 응력 변화에 대한 압전 단결정의 물성 변화를 고려한 압전 복합재료 작동기의 작동 변위 예측)

  • Yoon, Bum-Soo;Park, Ji-Won;Yoon, Kwang-Joon;Choi, Hyun-Young
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • In this study, LIPCA-S2 actuator with a piezoelectric single crystal layer and a carbon/epoxy layer was designed and evaluated to increase actuation performance of piezo-composite unimorph actuator. A curvature change model generated by the induced strain of a piezoelectric layer was used to predict the tip displacement of the piezo-composite unimorph cantilever. However, we found that there was big difference between the predicted and the measured tip displacement of LIPCA-S2 cantilever actuator when we used the previous linear prediction model. A new prediction model considering the change of piezoelectric strain coefficient and elastic modulus for the compression stress variation of the PMN-29PT single crystal layer was used and it was found that the difference between the predicted and the measured tip displacement reduced considerably.

Evaluation of Permeability on Construction Material in CFRD Bedding Zone (CFRD Bedding Zone의 축조재료에 대한 투수성 평가)

  • Han, Sang-Hyun;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.493-499
    • /
    • 2009
  • Recently, the construction of Concrete Faced Rockfill Dam (CFRD) is increasing because rock material resources are plenty in Korea. Bedding zone in the CFRD is necessary enough bearing capacity to support the concrete face slab uniformly and enough impermeability to prevent the loss of fine soils in case of leakage from the concrete slab face. Therefore, cut-off the water leakage in bedding zone securely is the key factor influencing the safety of CFRD. Tested materials satisfied with the specification of particle size distribution at the Bedding Zone area are chosen for conducting permeability tests, which are done to evaluate the property of cut off the materials. Based on the test results, the effects of cut off the materials are investigated by considering the coefficient of permeability, the soil particle distribution, and the dry unit weight. Especially, the relationships between coefficient of permeability with effective size(D10), dry unit weight, and weight passing percent the No.4 sieve are suggested, and also the variation of coefficient of permeability with time are proposed.