• 제목/요약/키워드: Material properties

검색결과 17,962건 처리시간 0.051초

수소고압저장용기용 팔라듐 첨가 탄소섬유복합재에 대한 멀티스케일 응력해석 (Multiscale Stress Analysis of Palladium/Carbon Fiber Composites for the Hydrogen High Pressure Vessel)

  • 박우림;권오헌
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.1-7
    • /
    • 2018
  • The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. The purpose of this study is to verify the validity of using palladium particles in carbon/fiber composites by multi-scale analysis. The palladium is a material for itself to detect leaking hydrogen by using the property of adsorbing hydrogen. The macroscopic model material properties used in this study are homogeneous material properties from microstructure. Homogenized material properties that are calculated from periodic boundary conditions in the microscopic representative volume element model of each macroscopic analysis model. In this study, three macroscopic models were used : carbon fiber/epoxy, carbon fiber/palladium, palladium/epoxy. As a result, adding palladium to carbon/epoxy composite is not a problem in terms of strength.

자동차용 클러치 마찰재의 미끄럼마찰마모특성 해석(제2보 마찰특성) (Analysis of Sliding Friction and Wear Properties of Clutch Facing for Automobile (Part 2))

  • 이한영;김근영;허만대
    • Tribology and Lubricants
    • /
    • 제21권2호
    • /
    • pp.77-82
    • /
    • 2005
  • In previous paper, the wear properties of clutch facing materials with two different copper amounts against fly-wheel materials used in the clutch system were investigated by sliding wear tests at different applied loads and speeds. This paper have been aimed to evaluate the friction properties for clutch facing materials at the same test conditions as the previous paper. The experimental results indicated that the friction properties of clutch facing materials are influenced from the thermal conductivities of the clutch facing material and the counter material. The clutch facing material with the lower thermal conductivity and the fly-wheel material with the higher thermal conductivity showed the low and stable friction coefficient in the range of high sliding speed. This appears to be due to the formation of a film on the surface of the fly-wheel material.

천연 및 합성고무의 기계적 물성 평가 (Mechanical Properties Evaluation of Natural and Synthetic Rubber)

  • 박현성;우창수
    • Elastomers and Composites
    • /
    • 제42권1호
    • /
    • pp.32-46
    • /
    • 2007
  • 고무부품의 신뢰성을 확보하기 위해서 고무재료의 기계적 물성을 정확히 파악하는 것이 매우 중요하다. 본 연구에서는 천연 및 합성고무에 대해 다양한 환경조건에서 물성시험을 수행하여 경도, 신율 및 응력-변형률 관계와 동 특성을 파악하였다. 또한, 고무부품의 유한요소 해석에 필요한 비선형 재료상수를 단축인장과 이축인장시험을 통해 결정하였다.

미끄럼 접촉을 하는 탄소강의 경도차 조합에 따른 마모특성변화 연구 (The Change of Sliding wear properties of Carbon Steel against several hardened steels)

  • 이한영;김근영
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.85-90
    • /
    • 2003
  • Although wear resistance of material improves with increasing its hardness, it is known that the wear resistance of steel is varied with hardness of counter material. In this context, wear properties of steel must be depended on the difference of hardness between the testpiece and the counter material. In this study, using the pin-on-disc type wear machine, annealed carbon steels were tested against ahoy tool steels with various levels of hardness. Then the changes of wear properties of carbon steel according to the hardness of counter material were investigated and the morphology of worn surface after test were evaluated. The results indicate that if there are no remarkable difference of hardness between them, wear resistance of carbon steel in running-in wear decreases with increasing the hardness of counter material. However, its wear properties at the range of high sliding speed have no relation with hardness of counter material. It is clear that wear properties is influenced by the formation of oxide of steel on their worn surface during wear.

  • PDF

Effect of Allyl Modified/Silane Modified Multiwalled Carbon Nano Tubes on the Electrical Properties of Unsaturated Polyester Resin Composites

  • Swain, Sarojini;Sharma, Ram Avatar;Patil, Sandip;Bhattacharya, Subhendu;Gadiyaram, Srinivasa Pavan;Chaudhari, Lokesh
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.267-272
    • /
    • 2012
  • Considering the properties of the carbon nano tubes (CNT), their inclusion into the polymer matrix vastly increases the properties of the resultant composite. However, this is not the case due to the poor interfacial adhesion of the CNT and the polymer matrix. The present approach focuses on increasing the interaction between the polymer matrix and the CNT through the chemical modification of the CNT resulting in allyl ester functionalized carbon nanotubes (ACNT) and silane functionalized carbon nano tubes (SCNT) which are capable of reacting with the polymer matrix during the curing reaction. The addition of ACNT/SCNT into unsaturated polyester resin (UPR) resulted in the improvement of the electrical properties of resulted nanocomposites in comparison to the CNT. The surface resistivity, volume resistivity, dielectric strength, dry arc resistivity, and the comparative tracking index of the nanocomposites were significantly improved in comparison to CNT. The chemical modification of CNT was confirmed via spectroscopy.

Effect of femoral mechanical properties on primary stability of cementless total hip arthroplasty: a finite element analysis

  • Reimeringer, Michael;Nuno, Natalia
    • Advances in biomechanics and applications
    • /
    • 제1권3호
    • /
    • pp.187-210
    • /
    • 2014
  • With the goal of increasing the survivorship of the prosthesis and anticipating primary stability problems of new prosthetic implants, finite element evaluation of the micromotion, at an early stage of the development, is mandatory. This allows assessing and optimizing different designs without manufacturing prostheses. This study aimed at investigating, using finite element analysis (FEA), the difference in the prediction of the primary stability of cementless hip prostheses implanted into a $Sawbones^{(R)}$ 4th generation, using the manufacturer's mechanical properties and using mechanical properties close to that of human bone provided by the literature (39 papers). FEA was carried out on the composite $Sawbones^{(R)}$ implanted with a straight taper femoral stem subjected to a loading condition simulating normal walking. Our results show that micromotion increases with a reduction of the bone material properties and decreases with the augmentation of the bone material properties at the stem-bone interface. Indeed, a decrease of the cancellous Young modulus from 155MPa to 50MPa increased the average micromotion from $29{\mu}m$ up to $41{\mu}m$ (+42%), whereas an increase of the cancellous Young modulus from 155MPa to 1000MPa decreased the average micromotion from $29{\mu}m$ to $5{\mu}m$ (-83%). A decrease of cortical Young modulus from 16.7GPa to 9GPa increase the average global micromotion from $29{\mu}m$ to $35{\mu}m$ (+33%), whereas an increase of the cortical Young modulus from 16.7GPa to 21GPa decreased the average global micromotion from $29{\mu}m$ to $27{\mu}m$ (-7%). It can also be seen that the material properties of the cancellous structure had a greater influence on the micromotion than the material properties of the cortical structure. The present study shows that micromotion predicted at the stem-bone interface with material properties of the $Sawbones^{(R)}$ 4th generation is close to that predicted with mechanical properties of human femur.

비파괴적인 재료물성치 평가에 관한 연구 (A Study on the Nondestructive Evaluation of Material Properties)

  • 김형익;김정표;석창성
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.130-136
    • /
    • 2005
  • The nondestructive evaluation system consisted of a ball indentation tester and a ultrasonic tester was developed to evaluate material properties. The relations between the parameters from test results using the system and the results of tensile and fracture toughness tests were investigated. The fracture toughness and tensile properties could be determined using the system. Some metallic materials were experimented to predict the fracture toughness and tensile properties and verify the relations between them. The predicted fracture toughness and tensile properties show a good agreement with the results obtained by conventional tests. It is found that the material properties and the material degradation can be evaluated using the nondestructive evaluation system.

Numerical Simulation and Forecasting of Mechanical Properties for Multi-Component Nonferrous Dispersion-hardened Powder Materials

  • Ryabicheva, Lyudmila;Usatyuk, Dmytro
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.998-999
    • /
    • 2006
  • A new mathematical simulation technique for physico-mechanical properties of multi-component powder materials is proposed in this paper. The main advantage of the technique is that finite elements representing different components are placed into a common mesh and may exchange their properties. The output data are properties of material after sintering. The technique allows us to investigate the influence of each component of a material on the properties and distribution of properties inside the sample. The comparative analysis of materials with different compositions is based on simulation results that are well concordant with the results of the laboratory experiments.

  • PDF

EQUIVALENT MATERIAL PROPERTIES OF PERFORATED PLATE WITH TRIANGULAR OR SQUARE PENETRATION PATTERN FOR DYNAMIC ANALYSIS

  • Jhung, Myung-Jo;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.689-696
    • /
    • 2006
  • For a perforated plate, it is challenging to develop a finite element model due to the necessity of the fine meshing of the plate, especially if it is submerged in fluid. This necessitates the use of a solid plate with equivalent material properties. Unfortunately, the effective elastic constants suggested by the ASME code are deemed not valid for a modal analysis. Therefore, in this study the equivalent material properties of a perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

LTCC Tape 제조 및 고주파 유전특성 평가 (Fabrication of LTCC Tape and Its Microwave Dielectric Properties)

  • 이경호;최병훈;안달;성정현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.382-385
    • /
    • 2001
  • In the previous study, a new LTCC material in the $PbWO_{4}-TiO_{2}-B_{2}O_{3}-CuO$ system was introduced. The developed material can be sintered at $850^{\circ}C$ and its dielectric properties are $\varepsilon_{r}=20-25$, $Q{\times}f_{o}=30000\sim50000GHz$, and $\tau_{f}=0.2{\sim}30ppm/^{\circ}C$, respectively. Therefore this material can be used as a LTCC substrate material for fabrication of multilayered high frequency communication module set. In present study, using this material, tape casting condition was established. With this condition, a multilayered resonator was fabricated and its electrical properties were examined. In present study, an antenna-duplexer module was also fabricated. Frequency characteristics of as-fabricated antenna-duplexer module was compared with simulation results.

  • PDF