• Title/Summary/Keyword: Material parameter

Search Result 1,889, Processing Time 0.027 seconds

Reliability Analysis of Plane Stress Element According to Limit State Equations (한계상태방정식에 따른 평면응력요소의 신뢰성해석)

  • Park, Seok Jae;Choi, Wae Ho;Kim, Yo Suk;Shin, Yeong-Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • In order to consider statistical properties of probability variables used in the structural analysis the conventional approach using the safety factor based on past experience usually estimated the safety of a structure Also the real structures could only be analyzed with the error in estimation of loads material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis Safety of structure could not precisely be appraised by the traditional structural design concept Recently new aproach based on the probability concept has been applied to the assessment of structural safety using the reliability concept Thus the computer program by the Probabilitstic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. Verification of the reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. The proper failure criterion according to characteristic of materials must be used for safe design.

  • PDF

Characteristics of Hydrogen Storage in Ti-Cr-Mo and Ti-Cr-V bcc Alloys (Ti-Cr-Mo계 및 Ti-Cr-V계 bcc 합금의 수소저장특성에 관한 연구)

  • You, J.H.;Cho, S.W.;Park, C.N.;Choi, J.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • The characteristics of hydrogen storage have been investigated in the Ti-Cr-Mo and Ti-Cr-V ternary alloys with bcc structure. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The lattice parameters, microstructures and phases of the alloys were examined by SEM, EDX and XRD, and the Pressure-Composition isotherms of the alloys were measured. From these data the relationship of the maximum and effective hydrogen storage capacities vs. chemical composition, lattice parameter and the radius of tetrahedral site were analyzed and discussed. The results showed that all of these alloy, in the range of the this study, had mainly bcc solid solutions with small amount of Ti segregation due to a lower melting point of Ti compared with other elements. Lattice parameters of the alloys were very near to the atomic average values of lattice parameters of the constituent elements. It was also found that maximum hydrogen storage capacities of the Ti-Cr-Mo alloys increased with increasing Ti content and the radius of tetrahedral site but the effective hydrogen storage capacities decreased after showing the maximum. The hydrogen storage capacities of the Ti-Cr-V alloys were almost same even though the V contens were quite different from alloy to alloy and this could be attributed to the almost same Ti/Cr ratio of the alloys. The maximum effective hydrogen storage capacity of the Ti-Cr-Mo alloys was revealed at Ti content of about 40${\sim}$50 at% and radius of tetrahedral site of 0.43${\sim}$0.45 nm. The Ti-Cr-V alloys showed the hydrogen storage capacities of 3.0 wt% and effective hydrogen storage capacities of 1.5 wt%.

Adhesive Strength in Tension of SBR-Modified Cement Mortar with Self-Flowability Material for Floor-Finishing (자기 평활성 바닥 마감용 SBR 시멘트 모르타르의 인장부착강도)

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.549-556
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been practised in many countries like America, Japan and Germany and so on because of high performance and good modification effect of these. In this study, SBR, Polymer dispersion that widely used in situ is employed that the self-flowability may be induced in the cemen mortar. In order to comprehend and investigate the modification of cement mortar with self-flowability by SBR and properties and fracture mode of adhesive strength in tension of that, experimental parameter was set as SBR solid-Cement ratio(S/C) and Cement:Fine aggregate(C:F) and the experiments such as Unit weight, Flow, Consistency change, Crack resistance and Segregation that inform on the general properties have been done. In addition of that, Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by SBR did grow better as the ratio of SBR solid-Cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90min. after mixing. Adhesive strength in tension increased with continuity in the curing age and showed the maximum in case of C:F=1:1 and S/C=20%. As the increase of curing age, the fracture mainly happened in the concrete substrate and the interface between the specimen and concrete substrate.

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates (경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성)

  • Yang, Keun-Hyeok;Oh, Seung-Jin;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2008
  • Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.

Fractional Anisotropy of Diffusion Tensor Imaging as a Predict Factor in Patient with Acute Cerebral Infarction (급성 뇌경색 환자에서 예후 추측인자로서의 확산텐서영상 비등방도)

  • Kim, Sung-Gil;Eun, Sung-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • Purpose : Diffusion tensor imaging(DTI) allows the visualization of fiber tract damage in patients with cerebral infarction. The purpose of this study is to evaluate the correlation between degree of NIH stoke scale and fractional anisotropy (FA) in patient with cerebral infarction. Material and Methods : 16 patients aged 36~77 years(male : 11, female : 5, mean age : 61y), diagnosed cerebral infarction by diffusion weighted imaging(DWI), underwent 24 directional diffusion tensor imaging(DTI). Patients had the DTI taken within 3days of stroke onset. Comparison of DWI, FA value on DTI were measured infarcted area and counter part of specific region of interest (ROI). And evaluation of differences between clinically improved patient group (n=9) and unimproved patient group (n=7) until 2 week follow up after development of cerebral infarction. Clinical status was scaled by NIH stroke scale. Results : Quantitative measurements of FA confirmed statistically the significant diffusion changes in the infarct compared with the matched-counter part region. In DWI, the infarcted area shows high signal intensity, however FA value on DTI was lower than normal brain parenchyma. The FA value of clinically improved patient by NIH stroke scale was 0.49, and the value of contralateral normal brain parenchyma was 0.41. On the contrary, FA value of infarcted area shows about 15% lower than normal brain parenchyma. But, the FA value of unimproved patient by NIH stroke scale represents a half those of contralateral normal brain parenchyma (0.28 on infarcted area vs. 0.56 on normal brain parenchyma). So, the FA value of unimproved patient group was considerably less than those of improved. Conclusion : It is concluded that the unimproved patient group after cerebral infarction showed much less FA value than that of normal brain parenchyma. The FA value of DTI may be one of the useful parameter to predict outcome of cerebral infarction patients.

Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod (소듐냉각 고속로 연료봉단의 접촉부 손상예측을 위한 가속시험 방법)

  • Kim, Hyung-Kyu;Lee, Young-Ho;Lee, Hyun-Seung;Lee, Kang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2017
  • This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the $B_{0.004}$ life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

Implementation of Front End Module for 2.4GHz WLAN Band (2.4GHz 무선랜 대역을 위한 Front End Module 구현)

  • Lee, Yun-Sang;Ryu, Jong-In;Kim, Dong-Su;Kim, Jun-Chul;Park, Jong-Dae;Kang, Nam-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • In this paper, the front end module (FEM) was proposed for 2.4GHz WLAN band by LTCC multilayer application. The FEM was composed of power amplifier IC, switch IC, and LTCC module. LTCC module consists of output matching circuit and lowpass filter as Tx part, bandpass filter as Rx part. Design of output matching circuit for LTCC was used matching parameter from output matching circuit based on lumped circuit on the PCB board. The dielectric constant of LTCC substrate is 9. The substrate was composed of total 26 layers with each 30um thickness. Ag paste was used for the internal pattern as the conductor material. The size of the module is $4.5mm{\times}3.2mm{\times}1.4mm$. The fabricated FEM showed the gain of 21dB, ACPR of less than -31dBc first side lobe and Less than -59dBc second side lobe and the output power of 23Bm at P1dB.

  • PDF

Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements (전단스프링과 섬유요소를 이용한 철근콘크리트 전단벽의 비선형 해석모델에 관한 연구)

  • Lee, Kwang-Ho;You, Tae-Sang;Kim, Tae-Wan;Jeong, Seong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.559-566
    • /
    • 2012
  • In this study, fiber elements and a spring are used to build a reinforced concrete shear wall model. The fiber elements and the spring reflect flexural and shear behaviors of the shear wall, respectively. The fiber elements are built by inputting section data and material properties. The spring parameters representing strength and stiffness degradation, pinching, and slip were determined by comparing behaviors of fiber element and VecTor2 results. 'Pinching4' model in OpenSees is used for shear spring. The parameter selecting process for shear spring is a complicated and time consuming process. To study the applicability of the fiber element, reinforced concrete buildings containing a shear wall are evaluated using nonlinear dynamic analysis with various wall aspect ratio (H/L), various beam heights, and stiffness and flexural strength of beam and wall ratios. The aspect ratio of the wall showed distinct difference in IDR (interstory drift ratio) of the models with and without spring. On the other hand, the height of beam and ratio of stiffness and flexural strength of beam and wall did not show clear relation.

Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder (알칼리 활성 슬래그 결합재를 이용한 자기충전 콘크리트의 기초 연구)

  • Song, Keum-Il;Shin, Gyeong-Sik;Gong, Min-Ho;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.657-665
    • /
    • 2013
  • The purpose of this study is the basic research of self-compacting concrete using Alkali-Activated Slag (AAS) binder in order to emphasize the durability of structures and facilitate casting the fresh concrete in field. The AAS binder emitted low carbon dioxide ($CO_2$) is eco friendly material of new concept because AAS products not only emit little $CO_2$ during production but also reuse the industrial by-products such as ground granulated blast-furnace slag (GGBS) of the steel mill. Until now, almost of domestic and foreign research are using Ordinary Portland Cement (OPC) for self-compacting concrete, and also, nonexistent research about AAS. The self-compacting concrete must get the performance of flowability, segregation resistance, filling and passing ability. Nine concrete mixes were prepared with the main parameter of unit amount of binder (400, 500, 600 $kg/m^3$) and 3 types of water-binder (W/B) ratio. The results of test were that fresh concretes were satisfied with flowability, segregation resistance, and filling ability of JSCE. But the passing ability was not meet the criteria of EFNARC because of higher viscosity of AAS paste than OPC. This high viscosity of AAS paste enables the manufacturing of self compacting concrete, segregation of which does not occur without the using of viscosity agent. It is necessary that the development of high fluidity AAS binders of higher strength and the study of better passing ability of AAS concrete mixes in order to use self compacting AAS concrete in field.

A New Hardware Design for Generating Digital Holographic Video based on Natural Scene (실사기반 디지털 홀로그래픽 비디오의 실시간 생성을 위한 하드웨어의 설계)

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.86-94
    • /
    • 2012
  • In this paper we propose a hardware architecture of high-speed CGH (computer generated hologram) generation processor, which particularly reduces the number of memory access times to avoid the bottle-neck in the memory access operation. For this, we use three main schemes. The first is pixel-by-pixel calculation rather than light source-by-source calculation. The second is parallel calculation scheme extracted by modifying the previous recursive calculation scheme. The last one is a fully pipelined calculation scheme and exactly structured timing scheduling by adjusting the hardware. The proposed hardware is structured to calculate a row of a CGH in parallel and each hologram pixel in a row is calculated independently. It consists of input interface, initial parameter calculator, hologram pixel calculators, line buffer, and memory controller. The implemented hardware to calculate a row of a $1,920{\times}1,080$ CGH in parallel uses 168,960 LUTs, 153,944 registers, and 19,212 DSP blocks in an Altera FPGA environment. It can stably operate at 198MHz. Because of the three schemes, the time to access the external memory is reduced to about 1/20,000 of the previous ones at the same calculation speed.