• 제목/요약/키워드: Material of organic solar cell

검색결과 73건 처리시간 0.027초

광활성층 사용물질에 따라 변화하는 유기태양전지의 효율 (Trend Efficiency of Organic Solar Cells with Respect to the Types of Photoactive Layer)

  • 김유은;김기환
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.581-593
    • /
    • 2022
  • As energy depletion and environmental pollution problems are intensified, research has been conducted actively on alternative energy sources, an eco-friendly and continuous available energy conversion system. So has been organic solar cells whose efficiency is improved to 18.32%. The photoactive layer inside the solar cell is composed of a donor and a acceptor, and the combination of materials capable of effectively exchanging electrons greatly affects the efficiency of the organic solar cell. Accordingly, various researches have been conducted to improve the efficiency, and the maximum efficiency could be achieved by a solar cell with high carrier generation and low charge recombination characteristics through the introduction of a non-fullerene acceptor and material reconstruction. Organic solar cells are still difficult to commercialize due to their efficiency limitations and light stability, but if a photoactive layer consisting of a donor capable of efficiently absorbing long-wavelength light and an acceptor capable of forming an appropriate energy level is designed, the efficiency of the organic solar cell will reach 20%.

Study on the reflectance characteristics of organic solar cell materials

  • Jung, In-Sung;Park, Book-Sung;Kim, Il-Ho;Kim, Chul-Ju
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.65-65
    • /
    • 2008
  • 본 논문의 목표는 유기태양전지의 재료적 특성중 반사율을 측정하여 가장 투명한 oranic solar cell을 제조하기 위한 기초자료를 도출하였다. 먼저 유기태양전지 재료중 일부인 PEDOT,PSS,MEH-PPV,P3HT를 수십 $\AA$ ~ 수백 $\AA$ 두께로 glass 기판위에 spin코팅하여 UV-VIS를 통해 파장열 반사 특성을 분석하였다. 또한, 동일한 시료를 사용하여 FESEM을 통한 표면 Morphology를 확인하였다. 최종적으로 가장 transparent 시료를 이용하여 oranic solar cell을 제작하여 efficiency와 reflectance characteristic를 측정하였다.

  • PDF

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

Solution-processed Organic Trilayer Solar Cells Incorporating Conjugated Polyelectrolytes

  • Cha, Myoung Joo;Walker, Bright;Seo, Jung Hwa
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.192.1-192.1
    • /
    • 2014
  • We report solution-processed organic trilayer solar cells consisting of poly (3-hexylthiophene) (P3HT), a conjugated polyelectrolyte (CPE) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), wherein the effect CPE layer thickness on device properties was investigated. The current-voltage characteristics under illumination and dark as well as photoluminescence were characterized using various concentrations (0.02, 0.1, and 0.3wt%) of to deposit the CPE interlayer between the donor and acceptor layers. We also investigated the influence of molecular dipole moments in the trilayer solar cells by external stimuli. These results provide an experimental approach for investigating the influence of interfacial dipoles on solar cell parameters when placed between the donor and acceptor and allow us to obtaining fundamental information about the donor/acceptor interface in organic solar cells.

  • PDF

Zinc phthalocyanine(ZnPC)/$C_{60}$ 소자를 이용한 유기 광소자의 광기전특성 (Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPC)/$C_{60}$ devices)

  • 이호식;허성우;오현석;장경욱;이준웅;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 제6회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.31-34
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine$(C_{60})$ as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar celt devices using the Xe lamp as a light source.

  • PDF

전극과 계면간의 개질에 의한 유기태양전지의 성능 연구 (A performance study of organic solar cells by electrode and interfacial modification)

  • 강남수;어용석;주병권;유재웅;진병두
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF

비진공 나노입자 코팅법을 이용한 CIGS 박막 태양전지 제조 (Fabrication of CIGS Thin Film Solar Cell by Non-Vacuum Nanoparticle Deposition Technique)

  • 안세진;김기현;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.222-224
    • /
    • 2006
  • A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.

  • PDF

Evaluation of the Performance of an Organic Thin Film Solar Cell Prepared Using the Active Layer of Poly[[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-Diyl-2.5-thiophenediyl]/[6,6]-Phenyl C71 Butyric Acid Methyl Ester Composite Thin Film

  • Ochiai, Shizuyasu;Uchiyama, Masaki;Kannappan, Santhakumar;Jayaraman, Ramajothi;Shin, Paik-Kyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.43-46
    • /
    • 2012
  • Organic solar cell devices were fabricated using poly[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-diyl-2.5-thiophenediyl] PCDTBT/ [6,6]-phenyl $C_{71}$ butyric acid methyl ester (PC71BM) active layer deposited by spin coating. Moreover, the relationship between solar cell performance and buffer layer thickness was investigated by spin coating speed and AFM imaging of the buffer layer surface. The performance of the organic solar cell with spin-coated active layer was then evaluated, and the power conversion efficiency of the solar cell was determined to be > 5%.

Study on the reflectance characteristics of materials for dye sensitized solar cell materials

  • Jung, In-Sung;Park, Book-Sung;Kim, Il-Ho;Hong, Gen-Gi;Kim, Chul-Ju
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.447-447
    • /
    • 2008
  • 본 논문의 목표는 염료감응 태양전지의 재료적 특성중 반사율을 측정하여 가장 투명한 dye sensitized solar cell을 제조하기 위한 기초자료를 도출하기 위함이다. 먼저 염료감응 태양전지의 재료중 산화물질인 TiO2,SnO2,ZnO,$Nb_2O_5$ 10~50nm두께로 ITO 기판위에 코팅하여 UV-VIS를 통해 파장별 반사 특성을 분석하였다. 또한, 동일한 시료를 사용하여 FESEM을 통한 표면 Morphology를 확인하였다. 기판제료인 TiO2,dye(염료),TCO,glass,ICO 에 대해서도 동일한 특성분석을 하였다.

  • PDF

Novel Organic Sensitizers with a Quinoline Unit for Efficient Dye-sensitized Solar Cells

  • Choi, Hye-Ju;Choi, Hyun-Bong;Paek, Sang-Hyun;Song, Ki-Hyung;Kang, Moon-Sung;Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.125-132
    • /
    • 2010
  • Three organic sensitizers, JK-128, JK-129, and JK-130 containing quinoline unit are designed and synthesized. Under standard global AM 1.5 solar condition, the JK-130 sensitized solar cell gave a short circuit photocurrent density of 11.52 mA $cm^{-2}$, an open circuit voltage of 0.70 V, and a fill factor of 0.75, corresponding to an overall conversion efficiency of 6.07%. We found that the $\eta$ of JK-130 was higher than those of other two cells due to the higher photocurrent. The higher $J_{sc}$ value is attributed to the broad and intense absorption spectrum of JK-130.